从新高考的考查情况来看,三角函数与解三角形的重点是:①以三角函数的定义,同角三角函数的基本关系和诱导公式作为工具考查三角恒等变形;②三角函数图像与性质的综合应用,有时也与三角恒等变形综合考查,多以选择题和填空题的形式呈现;③主要考查正弦定理、余弦定理和三角形面积公式的应用,有时也与三角恒等变形等进行综合命题,既有选择题、填空题,也有解答题.
1、从三角函数的定义出发,利用同角三角函数关系式、诱导公式进行简单的三角函数化简、求值,结合三角函数的图像,准确掌握三角函数的单调性、奇偶性、周期性、最值、对称性等性质,并能正确地描述三角函数图像的变换规律。要重视对三角函数图像和性质的深入研究,三角函数是高考考查知识的重要载体,是三角函数的基础。“五点法”画正弦函数图像是求解三角函数中的参数及正确理解图像变换的关键,把解决问题的方法技巧进行归纳、 整理,达到举一反三、触类旁通。
2、三角恒等变形时,要注意三看:角、名、形
角:观察角之间的关系,如α=(α+β)-β,2(α)=24(α)等,通过观察角之间的差别与联系,把角进行合理的拆分与组合,从而正确使用公式。
名:观察三角函数的名称之间的关系,如sinα,cosα,tanα的关系,常常要用到同角关系、诱导公式。通过观察函数名称之间的关系,确定使用的公式,常见的有“切化弦”“弦化切”等。
形:观察已知与未知的表达式之间的关系,主要是公式的变形应用。分析表达式的结构特征,寻求变形的方向,迅速准确地使用公式。
3、利用正、余弦定理解决平面几何问题的一般思路
1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解。
2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果。
做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题。
4、解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是:要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题。这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大。
热点1、三角函数的图象和性质
注意对基本三角函数y=sin x,y=cos x的图像与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.
热点2、三角函数与平面向量结合
三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.
热点3、解三角形
新高考对解三角形的考查,以正弦定理、余弦定理的综合应用为主.其命题规律可以从以下两方面看:
(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;
(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理、面积公式,常中线、周长、面积、实际问题等来命题.
《2022年高考数学专题专练》适用于高考二轮随时检测,精选自2021年高考真题百强校模拟题,30分钟限时定量练,练热点,练难点,练重点;练速度,练技巧,练手感。助高三考生划重点,找突破;助考生感受新风向,高考得高分。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【解三角形高考真题(2022年高考数学专题专练04三角函数与解三角形)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
