利用均值不等式求最值是高考的高频考点,主要以选择题或填空题出现,全国卷以解答题作为选考出现,难度一般中档。
利用均值不等式求最值应同时满足三个条件:
(1)一正,即各项或各因式为正;
(2)二定,即和或者积为定值;
(3)三相等,即各项或各因式能取到使等号成立的条件。
若题目直接满足均值不等式的条件,则直接使用均值不等式求得最值;若不能直接满足均值不等式的条件,则改变结构,通过代换创造使用均值不等式的条件;若一次使用均值不等式不能达到目的,则多次使用,但要注意取等一致。
下面以2018年高考数学江苏卷第13题为例。
本题借助三角形考查不等式求最值,涉及解三角形、均值不等式、柯西不等式等知识点,考查分析与应用能力、逻辑推理与计算能力,属于中档题。
法1,消元法,这是解决二元问题最直观的想法,将二元转化为一元,然后利用分离常数法构造使用均值不等式的条件,由均值不等式求出最小值。
法2,1的代换,借1代换是数学中一个非常有用的技巧,在三角函数中也经常使用,通过1的代换后构造使用均值不等式,进而求得最小值。
法3,万能设t法,这其实是一种主元的思想,通过t的代换,得到一个关于主元的一元二次方程,然后利用判别式求得t的范围。
法4,柯西不等式,柯西不等式简直就是解决最值问题的一把屠龙刀,干脆利索。
值得说明的是,均值不等式求最值的难点在于构造,常常使用“拆、拼、凑”等技巧,使其满足均值不等式中“正、定、等”的条件。
均值不等式求最值的类似题目不胜枚举,尤其是上述这种,几乎都是大同小异,所以下面随便举一例即可。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2017届江苏高考数学(第12集)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
