考试分析怎么写(12描述性统计分析)

 2025-07-24 13:18:02  阅读 139  评论 0

摘要:本案例有关说明本案例是分布拟合检验预测、单因素方差分析One-Way ANOVA的基础前导篇。基本概念不在此赘述。本案例分析所用数据为“19财管管理会计成绩.xlsx”。该数据可以在我的百度网盘上下载。链接:https://pan.baidu.com/s/1ARmBISe_xask-qqaNyaM1A 提取码:qa0f本案例为

本案例有关说明

本案例是分布拟合检验预测、单因素方差分析One-Way ANOVA的基础前导篇。基本概念不在此赘述。本案例分析所用数据为“19财管管理会计成绩.xlsx”。该数据可以在我的百度网盘上下载。

链接:https://pan.baidu.com/s/1ARmBISe_xask-qqaNyaM1A

提取码:qa0f

本案例为本人学习笔记,数据及分析结论供学习和教学参考之用。

描述性统计基本认识

描述性统计,是指通过数据计算“统计量”用来描述数据特征的活动。描述性统计分析主要包括以下几个方面的分析:

频数分析集中趋势分析离散程度分析数据分布绘制统计图

引入需要使用到的库

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

这个引入库的动作,是首先要做的。

read_excel()读入待分析数据

df = pd.read_excel('19财管管理会计成绩.xlsx',sheet_name='19财管管理会计')

数据集:"19财管管理会计成绩.xlsx",两列,class为分类变量,glkj为可度量变量。

class:班级。19财管1—19财管6。分类变量。glkj:管理会计,该科目考试成绩。

Descriptive Statistics

# 分组聚合,统计均值、次数、标准差等stats = df.groupby('class')['glkj'].agg(['mean', 'count', 'std','min','max'])# 计算0.05水平下的置信区间ci95_hi = []ci95_lo = []co_v = []for i in stats.index:m, c, s = stats.loc[i,['mean','count','std']]ci95_hi.append(m + 1.96 * s/math.sqrt(c))ci95_lo.append(m - 1.96 * s/math.sqrt(c))co_v.append(s/m)stats['ci95_LB'] = ci95_lostats['ci95_UB'] = ci95_histats['c.v'] = co_v

统计量stats

mean:均值std : 标准差min/max : 最小/最大值median : 中位数skew : 偏度ci : 置信区间c.v : 变异系数

上述“统计量”的基本概念计算方法及计算公式网上讲解很多,在此就不具体列出了,需要的请百度。

统计量如下图所示:

上面图表反映的基本信息

管理会计科目成绩平均值都较高,中位数均在90分以上的有四个班,特别是19财管5班均值高达93分,中位数95分。该班成绩离散程度最小,成绩变异程度最小。所有班级管理会计科目成绩分布呈现“左偏”。均值小于中位数。

boxplot & hist:了解大概的分布、发现异常值

# Draw a nested boxplotdf.boxplot(column='glkj', by='class', grid=False)sns.hist(column='glkj', by='class',figsize=(8,6) ,sharex=True,sharey=True)sns.despine(offset=10, trim=True)

核密度kde: 了解分布形态

#use sys default settingsax = sns.distplot(a= df['glkj'])ax.set(title='19财管管理会计成绩', xlabel='管理会计成绩',ylabel='P')

Signature:

sns.distplot(a, bins=None, hist=True, kde=True)

该图的成绩分段使用系统默认的设置。结果整体成绩是否为“左偏”?确实是“左偏”。

总体成绩的hist & kde:了解总体分布情况

# set bins fig,(ax1,ax2)= plt.subplots(1,2,sharex=True, figsize=(7,5))plt.subplot(1,2,1)ax1 = sns.distplot(a=df['glkj'], bins=[10, 20, 30, 40, 50, 60, 70, 80, 90,100],norm_hist= False,hist=True, kde=False,label='管理会计成绩')ax1.set(title='19财管管理会计成绩',xlabel='管理会计成绩',ylabel='Count')ax1.legend(loc='best')#plt.tight_layout(rect=(1, 1, 1, 1)) #设置默认的间距plt.subplot(1,2,2)ax2 = sns.distplot(a=df['glkj'], bins=[10, 20, 30, 40, 50, 60, 70, 80, 90,100],norm_hist= True,hist=True, kde=True,label='管理会计成绩KDE',color='green')ax2.set(title='19财管管理会计成绩KED',xlabel='管理会计成绩',ylabel='P')ax2.legend(loc='best')plt.subplots_adjust(wspace=0.3)plt.show()

使用pd.cut():自定义分段及频数统计

bins = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 101]labels = ['0-10','10-20','20-30','30-40','40-50','50-60','60-70','70-80','80-90','90+']
用法说明:pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False)x:需要切分的数据bins:切分区域right : 是否包含右端点默认True,包含labels:对应标签,用标记来代替返回的bins,若不在该序列中,则返回NaNretbins:是否返回间距binsprecision:精度include_lowest:是否包含左端点,默认False,不包含right : 是否包含右端点默认True,包含。该例为不包括False。[a,b)
df['glkj_bins'] = pd.cut(df['glkj'], bins=bins, labels=labels, include_lowest=True, right=False)class_count = df.groupby(by= 'class')['glkj_bins'].value_counts()pd_class_count= pd.DataFrame(class_count)pd_unstack = pd_class_count.unstack(fill_value=0)

分班级hist、kde:了解各班分布情况

for i in range(6):fig,(ax1,ax2)= plt.subplots(1,2,sharex=True,figsize=(8,6))plt.subplot(1,2,1)ax1 = sns.barplot(count_bins,pd_unstack.values[i],label=pd_unstack.index[i])ax1.legend(loc='best')ax1.set(xlabel= '管理会计分段成绩',ylabel= 'Count',title = '管理会计分班级成绩图')list_n = pd_unstack.values[i]for j, txt in enumerate(list_n):ax1.annotate(txt, (j, list_n[j]+0.6),horizontalalignment='center',verticalalignment='center')plt.subplot(1,2,2)ax2 = sns.distplot(a=df.loc[df['class']== pd_unstack.index[i]]['glkj'],bins=[10, 20, 30, 40, 50, 60, 70, 80, 90,100],norm_hist= True,hist=True, kde=True,label= pd_unstack.index[i],color='green')ax2.set(title='管理会计分班级成绩kde',xlabel='管理会计成绩',ylabel='P')ax2.legend(loc='best')plt.show()

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【考试分析怎么写(12描述性统计分析)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/fangfa/1939898.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0451秒, 内存占用1.93 MB, 访问数据库24次

陕ICP备14005772号-15