考研数学二范围(同济第六版)

 2024-11-03 07:51:01  阅读 375  评论 0

摘要:1、考研数学二只考高等数学和线性代数,概率和数理统计不考。2、具体情况:(1)高等数学(分值比例占总分78%)同济六版高等数学,除了第七章微分方程考带号的伯努利方程外,其余带号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几

1、考研数学二只考高等数学和线性代数,概率和数理统计不考。

2、具体情况:

(1)高等数学(分值比例占总分78%)同济六版高等数学,除了第七章微分方程考带号的伯努利方程外,其余带号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。

考研数学二范围(同济第六版)

(2)线性代数(分值比例占总分22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。

扩展资料

考研数学二大纲之高等数学

一、函数、极限、连续

1、考试内容

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形;初等函数函数关系的建立数列极限与函数极限的定义及其性质;

函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念;函数间断点的类型初等函数的连续性;闭区间上连续函数的性质。

2、考试要求

(1)、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

(2)、了解函数的有界性、单调性、周期性和奇偶性。

(3)、理解复合函数及分段函数的概念了解反函数及隐函数的概念。

(4)、掌握基本初等函数的性质及其图形,了解初等函数的概念。

(5)、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

(6)、掌握极限的性质及四则运算法则。

(7)、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

(8)、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

(9)、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

(10)、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

二、一元函数微分

1、考试要求

(1)、理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可睁搜胡导性与连续性之间的关系。

(2)、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

(3)、了解高阶导数的概念,会求简单函数的高阶导数。

(4)、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

(5)、理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。

(6)、掌握用洛必达法则求未定式极限的方法。悉拦

(7)、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

(漏冲8)、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

(9)、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。

三、一元函数积分

1、考试内容

原函数和不定积分的概念;不定积分的基本性质基本积分公式定积分的概念和基本性质;定积分中值定理积分上限的函数及其导数;牛顿-莱布尼茨(Newton-Leibniz)公式;

不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用

2、考试要求

(1)、理解原函数的概念,理解不定积分和定积分的概念。

(2)、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。

(3)、会求有理函数、三角函数有理式和简单无理函数的积分。

(4)、理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。

(5)、了解反常积分的概念,会计算反常积分。

(6)、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

四、多元函数微积分学

1、考试要求

(1)、了解多元函数的概念,了解二元函数的几何意义。

(2)、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

(3)、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。

(4)、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.

(5)、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程

1、考试内容

常微分方程的基本概念;变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的简单应用。

2、考试要求

(1)、了解微分方程及其阶、解、通解、初始条件和特解等概念。

(2)、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。

(3)、会用降阶法解微分方程。

(4)、理解二阶线性微分方程解的性质及解的结构定理。

(5)、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

(6)、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。

(7)、会用微分方程解决一些简单的应用问题。

考研数学二大纲之线性代数

一、行列式

1、考试内容

行列式的概念和基本性质行列式按行(列)展开定理

2、考试要求

(1)、了解行列式的概念,掌握行列式的性质.

(2)、会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵

1、考试内容

矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;矩阵可逆的充分必要条件;伴随矩阵矩阵的初等变换;初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算。

2、考试要求

(1)、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.

(2)、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

(3)、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

(4)、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

(5)、了解分块矩阵及其运算.

三、向量

1、考试内容

向量的概念;向量的线性组合和线性;表示向量组的线性相关与线性无关;向量组的极大线性无关组等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量的内积线性;无关向量组的正交规范化方法

2、考试要求

(1)、解n维向量、向量的线性组合与线性表示的概念.

(2)、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.

(3)、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.

(4)、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系

(5)、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组

1、考试内容:

线性方程组的克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和解的结构;齐次线性方程组的基础解系和通解;非齐次线性方程组的通解。

2、考试要求

(1)、会用克莱姆法则。

(2)、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

(3)、理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。

(4)、理解非齐次线性方程组的解的结构及通解的概念。

(5)、会用初等行变换求解线性方程组。

五、矩阵的特征值和特征向量

1、考试内容

矩阵的特征值和特征向量的概念;性质相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值;特征向量及其相似对角矩阵。

2、考试要求

(1)、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。

(2)、理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵。

(3)、理解实对称矩阵的特征值和特征向量的性质。

六、二次型

1、考试内容

二次型及其矩阵;表示合同变换与合同矩阵二次型的秩惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性。

2、考试要求

(1)、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念。

(2)、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。

(3)、理解正定二次型、正定矩阵的概念,并掌握其判别法。

参考资料:

-考研数学二大纲

请问考研数二考什么?有哪些参考书?

题型有选择、填空、解答,分值分别为32、24、94。考试内容:高等数学

117分,占78%。线性代数:33分,占做敬22%。

1、高等数学:函数、极限让渣、连续、一元函数微积分学、多元函数的微积分学、常微分方程。同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。

2、线性代数:行列式、矩阵、向量、坦胡悄线性方程组、矩阵的特征值和特征向量、二次型。数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。

考研数学二复习办法

整个数学复习,高等数学是占分值最大的,复习的时候,要以高等数学为主。同时线性代数和概率为辅,不管原来熟悉不熟悉,必须要把线性代数和概率统计要复习好。

高等数学它比较灵活的地方,主要集中在几章,一个是所谓的未定式极限的运算,再有一个是微分总值定理,还有积分的应用,特别是定积分在几何上的应用,高等数学的下半部分多元函数微分法、求偏导数,还有数学的线面积分,这都是我们特别应该注意的,应该出大题。

数学二考研考什么

考研数学二只考高等数学和线性代数,概率和数理统计不考。

数学二(高等数学,分值比例占78%)同济六版高等数学中除了第七章微分方程考带号的伯努利方程外,其余带号的都不考。所有近似的问题都不考;第四章不定积分不考积分表的使用。不考第八章空间解析几何与向量代数,除去第九章后面内容不考。

数学二(线性代数,分值比例占22%)同济五版线性代数,手没扰1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。

考研数学参考书:复习初期:看课本,结合《李永乐考研数学复习全书(数二)》。复习中期:做历年真题,结合《李永乐400题》。

其他考研数学参考书:《金榜图书 李永乐·王式安唯一考研数学系列》《张宇考研数学系列丛书:张宇考研数学题源探析经》《张宇考研数学题源探析经典1000题》《李永乐·王式安唯一考研数》等。

扩展资料

考研数学中线性代数的复习

线性代数相对于大家更为熟悉的高数来说,其实是比较容易的,其计算技巧相对较少,而且常考的题型也相对固定。

该科目有5道题:2个选择、1个填空、2道解答题。从近十年考研数学真题来看,选择题和填空题多毕旦数情况下是考查知识点综合性较小,经常考如行列式计算、矩阵初等变换、向量组线性相关(无关)、线性方程组的解等,难度较低。

而对两个解答题的考查,基本上都是多个知识点的综合,如矩阵的特征值和特征向量、矩阵对角化、二次型等知识点的综合运用,方法很常规,有时需要一定的技巧。只要同学们平时知识掌握得牢固,线性代数基本不会丢分。

中国研究生招生察薯信息网官网-网报公告

考研 数学二 具体考什么内容

其他信息:

数学二考研考高等数学和线性代数。 考研数学(Graduate in Mathematics)是指针对研究生考试的数学科目,根据不同学科、专业对研究生入学所应具备的数学知识和能力的不同要求,将研究竖早迅生入学统考试卷分为工科类数学一、数学二,经济学和管理学数学三,具体专业所使用的试卷种类有具体规定。 一、须使用数学一的招生专业: 1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工余此程及工睁禅程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。

2、授工学学位的管理科学与工程一级学科。 二、须使用数学二的招生专业: 工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。 三、须选用数学一或数学二的招生专业(由招生单位自定): 工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。

高等数学考点:

第一章 函数、极限、连续

等价无穷小代换、洛必达法则、泰勒展开式

求函数的极限

函数连续的概念、函数间断点的类型

判断函数连续性与间断点的类型

第二章  一元函数微分学

导数的定义、可导与连续之间的关系

按定义求一点处的导数,可导与连续的关系

函数的单调性、函数的极值

讨论函数的单调性、极值

闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯亏颂轮西中值定理和泰勒定理微分中值定理及其应用

第三章  一元函数积分学

积分上限的函数及其导数

变限积分求导问题

有理函数、三角函数有理式、简单无理函数的积分

计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分

第四章 多元函数微积分学

隐函数、偏导数、全微分的存在性以及它销信们之间的因果关系

函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系

二重积分的概念、性质及计算

二重积分的计算及应用

第五章  常微分方程

一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题

线性代数考点:

第一章 行列式

行列式的运算

计算抽象矩阵的行列式

第二章  矩阵

矩阵的运算

求矩阵高次幂等

矩阵的初等变换、初等矩阵

与初等变换有关的证命题

第三章 向量

向量组的线性相关及无关的有关性质及判别法

向量组的线性相关性

线性组合与线性表示

判定问量能否由向量组线性表示

第四章 线性方程组

齐樱卖次线性方程组的基础解系和通解的求法

求齐次线性方程组的基础解系、通解

第五章 矩阵的特征值和特征向量

实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题

相似变换、相似矩阵的概念及性质

相似矩阵的判定及逆问题

第六章  二次型

二次型的概念

求二次型的矩阵和秩

合同变换与合同矩阵的概念

数学二主要是针对农、林、地、矿、油等专业的考生,适用的招生专业为:

(1)工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科专业。

(2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科专业。

参考资料:

2018考研大纲原文:数学二(版)-考研-中国教育在线

>

以上就是关于考研数学二范围(同济第六版)全部的内容,包括:考研数学二范围(同济第六版)、2022考研数学二题型及分值是什么、请问考研数二考什么有哪些参考书等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【考研数学二范围(同济第六版)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/127864.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0350秒, 内存占用2.02 MB, 访问数据库22次

陕ICP备14005772号-15