正交矩阵唯一吗

 2024-11-14 04:51:01  阅读 155  评论 0

摘要:不唯一。即使二次型的矩阵的特征值都不相同,每个特征向量的k倍也都是对应特征值的特征向量,更不用说重特征值的情形。比如P=(,,)是有三个不同特征值对称矩阵的特征矩阵,那么P`=(3,5,7)同样也是该矩阵的特征矩阵。扩展资料如果AAT=E(E为单位矩阵,AT表示“矩阵A的转

不唯一。

即使二次型的矩阵的特征值都不相同,每个特征向量的k倍也都是对应特征值的特征向量,更不用说重特征值的情形。比如P=(α,β,γ)是有三个不同特征值对称矩阵的特征矩阵,那么P`=(3α,5β,7γ)同样也是该矩阵的特征矩阵。

扩展资料

如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的'酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。

正交矩阵唯一吗

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【正交矩阵唯一吗】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/180049.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0320秒, 内存占用1.98 MB, 访问数据库22次

陕ICP备14005772号-15