矩阵的维度

 2024-11-15 08:30:01  阅读 582  评论 0

摘要:矩阵不讲维数,维数是线性空间的性质,空间的维数是指它的基所含向量的个数,一个矩阵不能组成线性空间,不能讲维数。扩展资料在数学中,矩阵的维数说法不一,并没有定义矩阵的维数, 线性空间才有维数, 所以这造成了两种解释:1 矩阵的维数是其行向量(或列向量)生成的向量空

矩阵不讲维数,维数是线性空间的性质,空间的维数是指它的基所含向量的个数,一个矩阵不能组成线性空间,不能讲维数。

扩展资料

在数学中,矩阵的维数说法不一,并没有定义矩阵的维数, 线性空间才有维数, 所以这造成了两种解释:

1 矩阵的维数是其行向量(或列向量)生成的向量空间的维数;

矩阵的维度

2 指它的行数与列数 (一般编程人员喜欢这样定义, 因为他们关注的是数组的大小)。

你说的矩阵的秩,其实就是第1种,即矩阵的维数就是矩阵的秩。

矩阵的秩就是矩阵中非零子式的最高阶数,简单来说,就是把矩阵进行初等行变换之后有非零数的行数。

扩展资料:

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。

成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。

但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。

矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。

日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。

其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【矩阵的维度】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/185572.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.1489秒, 内存占用1.98 MB, 访问数据库26次

陕ICP备14005772号-15