我是考研究生,我不知道什么是数学(一),英语(一),谁能帮帮我?

 2024-11-17 06:09:01  阅读 916  评论 0

摘要:数学一[考试科目]高等数学、线性代数、概率论与数理统计初步高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义

数学一

[考试科目]

高等数学、线性代数、概率论与数理统计初步

我是考研究生,我不知道什么是数学(一),英语(一),谁能帮帮我?

高等数学

一、函数、极限、连续

考试内容

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义以及它们的性质函数的左、右极限无穷小无穷大无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:(略)

函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质(最大值、最小值定理和介值定理)

考试要求

1.理解函数的概念,掌握函数的表示方法。

2.了解函数的奇偶性、单调性、周期性和有界性。

3.理解复合函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形。

5.会建立简单应用问题中的函数关系式。

6.理解极限的概念,理解函数左、右极限的概念,以及极限存在与左、右极限之间的关系。

7.掌握极限的性质及四则运算法则。

8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。肆岁

9.理解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。

10.理解函数连续性的概念,会判别函数间断点的类型。

11.了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理、介值定理),并会应用这些性质。

二、一元函数微分学

考试内容

导数和微分的概念 导数的几何意义和物理意义函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数导数和微分的四则运算 反函数、复合函数、隐函数以及参数方程所确定的春雹核函数的微分法 高阶导数的概念 某些简单函数的N阶导数 一阶微分形式的不变性 微分在近似计算中的应用 罗尔(ROlle)定理 拉格朗日(LAGrange)中值定理 柯西(CAUCHY)中值定理泰勒(TYLOR)定理 洛必达(L'HOSPITAL)法则 函数的极值及其求法 函数增减性和函数图形的凹凸性的判定 函数图形的拐点及其求法 渐近线 描绘函数的图形 函数最大值和最小值的求法 及简单应用弧微分曲率的概念及计算曲率半径两曲线的交角方程近似解的二分法和切线法

考试要求

1.理解导数和微分的概念,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,了解微分在近似计算中的应用。

3.了解高阶导数的概念,会求简单函数的n阶导数。

4.会求分段函数的一阶、二阶导数。

5.会求隐函数和由参数方程所确定的函数的一阶扒掘、二阶导数,会求反函数的导数。

6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理。

7.了解并会用柯西中值定理。

8.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。

9.会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求水平、铅直和斜渐近线,会描绘函数的图形。

10.掌握用洛必达法则求未定式极限的方法。

11.了解曲率和曲率半径的概念,会计算曲率和曲率半径,会求两曲线的交角。

12.了解求方程近似解的二分法和切线法。

三、一元函数积分学

考试内容

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和性质 定积分中值定理 变上限定积分及其导数牛顿一莱布尼茨(newton一Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单元理函数的积分 广义积分的概念及其计算 定积分的近似计算法 定积分的应用

考试要求

1.理解原函数概念,理解不定积分和定积分的概念,理解定积分中值定理。

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及换元积分法与分部积分法。

3.会求有理函数、三角函数有理式及简单元理函数的积分。

4.理解变上限定积分是其上限的函数及其求导定理,掌握牛顿一莱布尼茨公式。

5.了解广义积分的概念并会计算广义积分。

6.了解定积分的近似计算法。

7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等)。

四、向量代数和空间解析几何

考试内容

向量的概念 向量的线性运算 向量的数量积和向量积的概念及运算 向量的混合积 两向量垂直和平行的条件 两向量的夹角 向量的坐标表达式及其运算单位 向量方向数与方向余弦曲面方程和空间曲线方程的概念 平面方程、直线方程及其求法 平面与平面、平面与直线、直线与直线的平行、垂直的条件和夹角点到平面和点到直线的距离球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程

考试要求

1 理解空间直角坐标系,理解向量的概念及其表示。

2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。

3.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法。

4.掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

5.理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱

面方程。

6.了解空间曲线的参数方程和一般方程。人了解空间曲线在坐标平面上的投影,并会求其方程。

五、多元函数微分学

考试内容

多元函数的概念二元函数的极限和连续的概念 有界闭域上连续函数的性质偏导数、全微分的概念 全微分存在的必要条件和充分条件 全微分在近似计算中的应用 复合函数、隐函数的求导法 二阶偏导数方向导数和梯度的概念及其计算 空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式 多元函数极值和条件极值的概念 多元函数极值的必要条件二元函数极值的充分条件 极值的求法 拉格朗日乘数法 多元函数的最大值、最小值及其简单应用

考试要求

1.理解多元函数的概念。

2.了解二元函数的极限与连续性的概念,以及有界闭域上连续函数的性质。

3.理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,以及全微分在近似计算中的应用。

4.理解方向导数与梯度的概念并掌握其计算方法。

5.掌握复合函数一阶、二阶偏导数的求法。

6.会求隐函数(包括由方程组确定的隐函数)的偏导数。

7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。

8.了解二元函数的二阶泰勒公式。

9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值并会解决一些简单的应用问题。

六、多元函数积分学

考试内容

二重积分、三重积分的概念及性质 二重积分与三重积分的计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式平面曲线积分与路径无关的条件 已知全微分求原函数两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(GauSS)公式 斯托克斯(STOKES) 公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用

考试要求

1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。

2.掌握二重积分(直角坐标、极坐标)的计算方法,会计算三重积分(直角坐标、柱面坐标、球面坐标)。

3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

4.掌握计算两类曲线积分的方法。

5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。

6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。

7.了解散度与旋度的概念,并会计算。

8.会用重积分、曲线积分及曲面积分,求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。

七、无穷级数

考试内容

常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与P级数正项级数的比较审敛法 比值审敛法、根值审敛法交错级数的莱布尼茨定理 绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数的收敛半径、收敛区间(指开区间)和收敛域幂级数在其收敛区问内的基本性质 简单幂级数的和函数的求法函数 可展开为泰勒级数的充分必要条件 麦克劳林(Maclaurin)展开式幂级数在近似计算中的应用 函数的傅里叶(FOurier)系数与傅里叶级数 狄利克雷(Dlrichlei)定理函数在[一L,L]上的傅里叶级数函数 在[卜,L]上的正弦级数和余弦级数

考试要求

1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。

2.掌握几何级数与P级数的收敛性。

3.会用正项级数的比较审敛法和根值审敛法,掌握正项级数的比值审敛法。

4.会用交错级数的莱布尼茨定理。

5.了解无穷级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。

6.了解函数项级数的收敛域及和函数的概念。

7.掌握幂级数的收敛半径、收敛区间及收敛域的求法。

8.了解幂级数在其收敛区间内的一些基本性质,会求一些幂级数在收敛区问内的和函数,并会由此求出某些数项级数的和。

9.了解函数展开为泰勒级数的充分必要条件。

10.掌握一些函数的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。

11.了解幂级数在近似计算上的简单应用。

12.了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-L,L]上的函数展开为傅里叶级数,会将定义在[0,L]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。

八、常微分方程

考试内容

常微分方程的概念 微分方程的解、通解、初始条件和特解变量可分离的方程 齐次方程一阶线性方程 伯努利(BER-noulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Eu1er)方程 包含两个未知函数的一阶常系数线性微分方程组 微分方程的幂级数解法 微分方程(或方程组)的简单应用问题

考试要求

1.了解微分方程及其解、通解、初始条件和特解等概念。

2.掌握变量可分离的方程及一阶线性方程的解法。

3.会解齐次方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。

4.会用降阶法解一些方程(略)

5.理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.会求自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.了解微分方程的幂级数解法,会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。

9.会用微分方程(或方程组)解决一些简单的应用问题。

线性代数

一、行列式

考试内容

行列式的定义、性质和计算

考试要求

1.了解行列式的定义和性质。

2.掌握三阶、四阶行列式的计算法,会计算简单的”阶行列式。

二、矩阵

考试内容

矩阵的概念 单位矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换和初等矩阵矩阵等价矩阵的秩初等变换 求矩阵的秩和逆矩阵的方法 分块矩阵及其运算

考试要求

1.理解矩阵的概念。

2.了解单位矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。

3.掌握矩 的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂、方阵乘积的行列式。

4.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆。

5.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

6.了解分块矩阵及其运算。

三、向量

考试内容

向量的概念 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间、子空间、基底、维数及坐标等概念 N维向量空间的基变换和坐标变换 过渡矩阵向量的内积线性元关向量组的正交规范化方法 标准正交基正交矩阵及其性质

考试要求

1.理解n维向量的概念。

2.理解向量组线性相关、线性尤关的定义,了解并会用有关向量组线性相关、线性无关的重要结论。

3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。

4 了解向量组等价的概念,了解向量组的秩与矩阵秩的关系。

5了解N维向量空间、子空间、基底、维数、坐标等概念。

6掌握基变换和坐标变换公式,会求过渡矩阵。

7.了解内积的概念,掌握线性无关向量组标准规范化的施密特(SCHMIDT)方法。

8.了解标准正交基、正交矩阵的概念,以及它们的性质。

四、线性方程组

考试内容

线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解解空间 非齐次线性方程组的通解行初等变换 求解线性方程组的方法

考试要求

1 理解克莱姆法则。

2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

3.理解齐次线性方程组的基础解系、通解及解空间的概念。

4.理解非齐次线性方程组解的结构及通解的概念。

5.掌握用行初等变换求线性方程组通解的方法。

五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质及求法 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件 实对称矩阵的相似对角矩阵

考试要求

1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。

2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件。

3.掌握用相似变换化实对称矩阵为对角矩阵的方法。

六、二次型

考试内容

二次型及其矩阵表示二次型的秩惯性定理 用正交变换和配方法化二次型为标准形二次型和对应矩阵的正定性及其判别法

考试要求

掌握二次型及其矩阵表示,了解二次型秩的概念,了解惯四、随机变量的数字特征

概率论与数理统计初步

四、随机变量的数字特征

考试内容

数学期望(均值)和方差的概念、性质及计算二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望和方差随机变量函数的数学期望矩、协方差和相关系数

考试要求

1.理解数学期望和方差的概念,掌握它们的性质与计算。

2.掌握二项分布、泊松分布和正态分布的数学期望和方差,了解均匀分布和指数分布的数学期望和方差。

3 会计算随机变量函数的数学期望。

4 了解矩、协方差和相关系数的概念和性质,并会计算。

五、大数定律和中心极限定理

考试内容

切比雪夫(Chebykshev)不等式 切比雪夫定理和伯努利定理 林德怕格一列维(Lindberg一DevO定理(独立同分布的中心极限定理)和列莫弗一拉普拉斯(De Moivre一LAPLACE)定理(二项分布以正态分布为极限分布)

考试要求

1 了解切比雪夫不等式。

2.了解切比雪夫定理和伯努利定理。

3.了解林德怕格一列维定理(独立同分布的中心极限定理)和橡莫弗一拉普拉斯定理(二项分布以正态分布为极限分布)。

六、数理统计的基本概念

考试内容

总体、个体、简单随机样本和统计量的概念样本均值、样本方差分布的定义及性质 总体的某些常用统计量的分布

考试要求

1 理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样个人人及样本川的计算。

2.进阶/分布、分布和下分布的定义及性质,了解分位数的概念斤会产表计算,

3.了解正态总体的某些常用统计量的分布。

七、参数估计

考试内容

点估计的概念 矩估计法 极大似然估计法 估计量的评选 标准区间估计的概念 单个正态总体的均值和方差的置信区间 两个正态总体的均值差和方差比的置信区间

考试要求

1.理解点估计的概念。

2.掌握矩估计法(一阶、二阶)和极大似然估计法。

3.了解估计量的评选标准(无偏性、有效性、一致性)。

4.理解区间估计的概念。

5.会求单个正态总体的均值和方差的置信区间。

6.会求两个正态总体的均值差和方差比的置信区间。

八、假设检验

考试内容

显著性检验的基本思想、基本步骤和可能产生的两类错误 单个及两个正态总体的均值和方差的假设检验总体分布假设的检验法

考试要求

1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

2.了解单个及两个正态总体的均值和方差的假设检验。

3.了解总体分布假设的检验法。

[试卷结构]

(一)内容比例

高等数学约60%

线性代数约20%

概率论与数理统计初步约20%

(二)题型比例

填空题与选择题约30%

解答题(包括证明题)约70%

英语一的话我没听说过有这回事啊

考研数学三中不定积分的范围

微积分

一、函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则亮侍肢 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

2.了解函数的有界性.单调性.周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.了解数列极限和函数极限(包括左极限与右极限)的概念.

6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.

7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.

8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质.

二、一元函数微分学

考试内

导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值

考试要求

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.

2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.

5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.

6.会用洛必达法则求极限.

7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间 内,设敬世函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.

9.会描述简单函数的图形.

三、一元函数积分学

考试内容

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用

考试要求

1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.

2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.

3.会利用定积分谈厅计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.

4.了解反常积分的概念,会计算反常积分.

四、多元函数微积分学

考试内容

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分

考试要求

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.

五、无穷级数

考试内容

常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式

考试要求

1.了解级数的收敛与发散.收敛级数的和的概念.

2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.

3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.

4.会求幂级数的收敛半径、收敛区间及收敛域.

5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数

6.了解 . . . 及 的麦克劳林(Maclaurin)展开式.

六、常微分方程

考试内容

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.

3.会解二阶常系数齐次线性微分方程.

4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.

5.了解差分与差分方程及其通解与特解等概念.

6.了解一阶常系数线性差分方程的求解方法.

7.会用微分方程求解简单的经济应用问题.

线性代数

一、 行列式

考试内容

行列式的概念和基本性质 行列式按行(列)展开定理

考试要求

1了解行列式的概念,掌握行列式的性质.

2会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵

考试内容

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

3理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵

4了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

5了解分块矩阵的概念,掌握分块矩阵的运算法则.

三、向量

考试内容

向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法

考试要求

1.了解向量的概念,掌握向量的加法和数乘运算法则.

2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.

4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.

5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组

考试内容

线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解

考试要求

1会用克莱姆法则解线性方程组.

2掌握非齐次线性方程组有解和无解的判定方法.

3理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

4理解非齐次线性方程组解的结构及通解的概念.

5掌握用初等行变换求解线性方程组的方法.

五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵

考试要求

1理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

2理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.

3掌握实对称矩阵的特征值和特征向量的性质.

六、二次型

考试内容

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

考试要求

1了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.

2了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.

3理解正定二次型.正定矩阵的概念,并掌握其判别法.

概率论与数理统计

一、 随机事件和概率

考试内容

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.

3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

二、随机变量及其分布

考试内容

随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

考试要求

1.理解随机变量的概念,理解分布函数

的概念及性质,会计算与随机变量相联系的事件的概率.

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.

3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为

5.会求随机变量函数的分布.

三、多维随机变量的分布

考试内容

多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布

考试要求

1.理解多维随机变量的分布函数的概念和基本性质.

2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.

4掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.

5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.

四、随机变量的数字特征

考试内容

随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.

2.会求随机变量函数的数学期望.

3.了解切比雪夫不等式.

五、大数定律和中心极限定理

考试内容

切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列维—林德伯格(Levy-Lindberg)定理

考试要求

1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.

六、数理统计的基本概念

考试内容

总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布

考试要求

1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为

2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、 分布和 分布得上侧 分位数,会查相应的数值表.

3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.

4了解经验分布函数的概念和性质.

七、参数估计

考试内容

点估计的概念 估计量与估计值 矩估计法 最大似然估计法

考试要求

1.了解参数的点估计、估计量与估计值的概念.

2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法

定积分考研引力公式

考试要求

1.理解原函数的概念,理解不定积分和定积分的概念。

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。

3.会求有理函数、三角函数有理式和简单无理函数的积分。

4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

5.了解反常积分的概念,会计算反常积分。

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式 x = φ(t)。此方法主要是求无理函数(带有根号的函数)的不定积分。由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。

下面我简单介绍第二类换元法中常用的方法:

渗好(1)根式代换:被积函数中带有根式√(ax+b),可直接令 t =√(ax+b);

(2)三角代换:利用三角函数代换,变丛拍铅根式积分为有理函数积分,有三种类型:

被积函数含根式√(a^2-x^2),令 x = asint

被积函数含根式√(a^2+x^2),令 x = atant

被积函数含根式√(x^2-a^2),令 x = asect

注:记住三角形示意图可为变量还原提供方便。

还有几种代换形式:

(3)倒代换(即令 x = 1/t):设m,n 分别为被积函数的分子、分母关于x 的最高次数,当 n-m>1时,用倒代换可望成功;

(4)指数代换:适用于被积函数由贺薯指数 a^x 所构成的代数式;

(5)万能代换(半角代换):被积函数是三角函数有理式,可令 t = tan(x/2)

解决天体运动问题的两条基本思路

(l) 地表

mg =c Mm

GM

-= =

R2

R

地球体禅兆罩积:V=

"AR'

p=

-|로

8 =

4

GopR

离表面贺闹高处:

GM

=(R+D

p

M= GT

37 7 3

(2)在空猜枣中做匀速圆周运动

Mm

G

2

- тан = m

近地轨造r-百

=mr% =mr(

27

j2

a

c 1

GM

GM

以上就是关于我是考研究生,我不知道什么是数学(一),英语(一),谁能帮帮我全部的内容,包括:我是考研究生,我不知道什么是数学(一),英语(一),谁能帮帮我、考研数学、考研数学三中不定积分的范围等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【我是考研究生,我不知道什么是数学(一),英语(一),谁能帮帮我?】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/200574.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.1277秒, 内存占用2.08 MB, 访问数据库22次

陕ICP备14005772号-15