2021年成都师范学院专升本《高等数学

 2024-11-20 01:30:01  阅读 262  评论 0

摘要:一 、总体要求本大纲适用于报考我校财经类、管理类本科专业的专科学生。考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程以及《线性代数》的行列式、矩阵、向量、方程组的基本概念与基本理论;掌握上

一 、总体要求

本大纲适用于报考我校财经类、管理类本科专业的专科学生。考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程以及《线性代数》的行列式、矩阵、向量、方程组的基本概念与基本理论;掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确、简捷地计算;能综合运用所学知识分析并解决简单的实际问题。本大纲对内容的要求由低到高,对概念和理论分为 “了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握” 三个层次。

二、 考试范围及要求

2021年成都师范学院专升本《高等数学

(一) 函数、限和连续

函数

1. 理解函数的概念,会求函数的定义域、表达式及函数值。会求分段函数的定义域、函数值,并会作出简单的分段函数图像。会建立简单实际问题的函数关系式。

2. 理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

点的关系,掌握利用一阶导数求函数极值、最值的方法,并会求解简单的应用问题(包括经济分析中的问题)。

5. 知道边际及弹性概念,会求经济函数边际值和边际函数(重点是边际成本、边际收益、边际利润)用其经济意义,会求需求函数的需求弹性。

6. 会判定曲线的凹凸性,会求曲线的拐点。

7. 会求曲线的水平渐近线与垂直渐近线。

(三) 一元函数积分学

不定积分

1. 理解原函数与不定积分的概念,掌握不定积分的性质,了解原函数存在定理。

2. 熟练掌握基本的积分公式。

3. 熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

4. 掌握不定积分的分部积分法。

5. 会求简单有理函数及简单无理函数的不定积分。

定积分

1. 理解定积分的概念与几何意义,了解函数可积的条件。

2. 掌握定积分的基本性质。

3. 了解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。

4. 熟练掌握牛顿—莱布尼茨公式。

5. 掌握定积分的换元积分法与分部积分法。并会证明一些简单的积分恒等式。点的关系,掌握利用一阶导数求函数极值、最值的方法,并会求解简单的应用问题(包括经济分析中的问题)。

5. 知道边际及弹性概念,会求经济函数边际值和边际函数(重点是边际成本、边际收益、边际利润)用其经济意义,会求需求函数的需求弹性。

6. 会判定曲线的凹凸性,会求曲线的拐点。

7. 会求曲线的水平渐近线与垂直渐近线。

(三) 一元函数积分学

不定积分

1. 理解原函数与不定积分的概念,掌握不定积分的性质,了解原函数存在定理。

2. 熟练掌握基本的积分公式。

3. 熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

4. 掌握不定积分的分部积分法。

5. 会求简单有理函数及简单无理函数的不定积分。

定积分

1. 理解定积分的概念与几何意义,了解函数可积的条件。

2. 掌握定积分的基本性质。

3. 了解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。

4. 熟练掌握牛顿—莱布尼茨公式。

5. 掌握定积分的换元积分法与分部积分法。并会证明一些简单的积分恒等式。

6. 理解无穷区间广义积分的概念,掌握其计算方法。

7. 掌握直角坐标系下用定积分计算平面图形的面积会求平面图形绕坐标轴旋转所生成的旋转体体积及解决简单的经济问题。

( 四 ) 多元函数微积分学

多元函数微分学

1. 了解多元函数的概念、二元函数的几何意义及二元函数的极限与连续概念(对计算不作要求)。会求二元函数的定义域。

2. 理解偏导数概念,了解全微分概念及其全微分存在的必要条件与充分条件。

3. 掌握二元函数的一、二阶偏导数计算方法。

4. 掌握复合函数一阶偏导数的求法(含抽象函数)。

5. 会求二元函数的全微分(不含抽象函数)。

7.会求二元函数的无条件极值。会应用拉格朗日乘数法求解一些最大值最小值问题。

二重积分

1. 理解二重积分的概念及其性质。

2. 掌握二重积分在直角坐标系及极坐标系下的计算方法。

(五) 无穷级数

数项级数

1. 理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。

2. 掌握正项级数的比较判别法、比值判别法和根值判别法。

对称矩阵和反对称矩阵以及它们的性质。

2. 掌握矩阵的线性运算、乘法、转置、方阵乘积的行列式及它们的运算规律。

3. 理解逆矩阵的概念,掌握矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆矩阵。

4. 掌握矩阵的初等变换,了解矩阵秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

向量

1. 了解 n 维向量的概念,向量的线性组合与线性表示。

2. 理解向量组线性相关与线性无关的定义,掌握判别向量组线性相关性的方法。

3. 了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组和秩。

线性方程组

1. 掌握克莱姆法则。

2. 理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

3. 了解齐次线性方程组的基础解系、通解的概念。

4. 了解非齐次线性方程组解的结构及通解的概念。

5. 掌握用行初等变换求线性方程组通解的方法。

三 、考试方式

(一)考试方式:闭卷、笔试。

(二)考试时间:

120分钟。

四 、试卷结构

(一)试卷分数:试卷满分为100分。

(二)考试试题符合本考试大纲考试内容要求,其中:了解内容占20%,理解内容占20%,掌握内容60%。

(三)试题参考题型及参考分值:

考试题型有判断题、单项选择题、填空题、计算题、解答题等。

1. 判断:每小题2分,共5小题,共10分。

2. 单项选择选择:每小题3分,共5小题,共15分。

3. 填空:每空3分,共5空,共15分。

4. 计算:每小题5分,共8小题,共40分。

5. 解答:每小题10分,共2小题,共20分。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2021年成都师范学院专升本《高等数学】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/240976.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0336秒, 内存占用1.99 MB, 访问数据库23次

陕ICP备14005772号-15