矩阵的变换法则

 2024-11-28 03:06:01  阅读 280  评论 0

摘要:矩阵的初等变换是指以下三种变换类型 :(1) 交换矩阵的两行(对调i,j,两行记为ri,rj);(2) 以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为rik);(3) 把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri+krj)。类似地,把以上的“

矩阵的初等变换是指以下三种变换类型 :

(1) 交换矩阵的两行(对调i,j,两行记为ri,rj);

(2) 以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为ri×k);

矩阵的变换法则

(3) 把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri+krj)。

类似地,把以上的“行”改为“列”便得到矩阵初等变换的定义,把对应的记号“r”换为“c”。

矩阵的初等行变换与初等列变换合称为矩阵的初等变换。

扩展资料

若矩阵A经过有限次的初等行变换变为矩阵B,则矩阵A与矩阵B行等价;若矩阵A经过有限次的初等列变换变为矩阵B,则矩阵A与矩阵B列等价;若矩阵A经过有限次的初等变换变为矩阵B,则矩阵A与矩阵B等价。

矩阵等价性质:

(1)反身性 A~A;

(2)对称性 若A~B,则B~A;

(3)传递性 若A~B,B~C,则A~C

初等矩阵性质:

1、设A是一个m×n矩阵,对A施行一次初等行变换,其结果等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,其结果等价于在A的'右边乘以相应的n阶初等矩阵。反之亦然。

2、方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,......Pn,使得A=P1P2...Pn.

3、m×n矩阵A与B等价当且仅当存在m阶可逆矩阵P与n阶可逆矩阵Q使得B=PAQ。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【矩阵的变换法则】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/357148.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0325秒, 内存占用1.98 MB, 访问数据库22次

陕ICP备14005772号-15