2023安徽公务员考试行测数量关系:均值不等式巧解利润最值问题

 2024-12-09 18:03:01  阅读 184  评论 0

摘要:均值不等式的一种表达形式如下,如果a、b均为非负实数,那么当且仅当a=b时,等号成立。由上述表达式,我们可以得到如下结论:已知a、b均为正数,若a+b为定值,则当且仅当a=b时,ab取得最大值。示例已知x>0,y>0,且2x+5y=20,则xy的最大值是多少?在这道题目中,2x相当于a,5y

均值不等式的一种表达形式如下,

如果a、b均为非负实数,那么当且仅当a=b时,等号成立。

2023安徽公务员考试行测数量关系:均值不等式巧解利润最值问题

由上述表达式,我们可以得到如下结论:已知a、b均为正数,若a+b为定值,则当且仅当a=b时,ab取得最大值。

示例

已知x>0,y>0,且2x+5y=20,则xy的最大值是多少?

在这道题目中,2x相当于a,5y相当于b,则a+b=20,是定值,所以当且仅当a=b,即2x=5y时,2x×5y存在最大值,因为2x=5y且加和等于20,所以2x=5y=10,求出2x×5y=10xy=100,即xy最大值为10。

应用
例1

某商场销售一批名牌衬衫平均每天可售出20件,每件盈利40元。为了扩大销售增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现如果每件衬衫每降价1元,商场平均每天可多售出2件,每件衬衫降低( )元时,商场每天盈利最多。

A.12 B.15 C.20 D.25

答案选B。接下来通过本题的解析我们梳理此类题目的解题思路:

(1)找等量关系,列方程。

本题所求为利润最值问题,结合条件可以得出等量关系:总利润=单件利润×销量。分析可得如果售价下降1元在成本不变的情况下利润即下降1元,同时销量会增加2件,这道题可以设每件衬衫的售价下降了x元,商场的总利润为y元,那么可列出方程y=(40-x)×(20+2x)。

(2)凑配定和,求极值。

y=(40-x)×(20+2x),由前面学习的均值不等式的结论可知,要想求两部分乘积的最大值,需要这两部分的加和为定值,而我们会发现40-x和20+2x的加和并不是常数,所以不为定值,那么就需要未知数在加和后抵消掉,则可将方程变形为y=2×(40-x)×(10+x),此时40-x与10+x的和为定值,所以当且仅当40-x=10+x,即x=15时,y存在最大值,答案为B。

例2

某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满,当每个房间的定价每增加10元时,就会有一个房间空闲,问房价为多少元时宾馆利润最大?

A.260 B.280 C.300 D.340

答案D。解析:总收入最多则利润最大,所以需要求出总收入的最大值,通过题干条件可得等量关系为:总收入=房间单价×入住房间数量,房价增加会使入住房间数减少,此时可设房价增加了x个10元,总收入为y元,可得y=(180+10x)×(50-x),想求两个部分乘积的最大值,需要使两部分加和为定值,可将方程变形为y=10×(18+x)×(50-x),当且仅当18+x=50-x,即x=16时,y取最大值,此时每个房间的价格为180+10×16=340元,故答案为D。

通过上述例题我们可以发现,利润最值问题采用均值不等式的思想来求解是非常简单的,希望同学们能够多看几遍,充分吸收,做到熟能生巧、举一反三。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2023安徽公务员考试行测数量关系:均值不等式巧解利润最值问题】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/502208.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0333秒, 内存占用1.98 MB, 访问数据库22次

陕ICP备14005772号-15