显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。

常把一个要检验的假设记作H0,称为原假设(或零假设) (null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴ 在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵ 在原假设不真时,决定不放弃原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。这样的假设 检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。一般情况下,根据研究的问题,如果放弃真假设损失大,为减少这类错误,α取值小些 ,反之,α取值大些。
显著性检验的基本思想可以用小概率原理来解释。
1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件 事实上发生了。那只能认为事件 不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。
2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。
3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。
4、在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。大于这个标准时,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。
5、检验的操作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的 值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。
截位直除法介绍如下:
1、什么是截位直除法
截位直除就是在除法运算中,对分子分母的数据从左往右取几位数字,然后再做除法,在不用除完的情况下,用运算结果的首位或者第二位,与选项结合选出正确答案的一种方法。
通常情况下分子截不截位一般不影响我们的计算难度,所以可以保留或者适当的取整就可以,分母从左往右四舍五入保留两位或三位,也就是说分子分母尽量只动分母。例如对于除法式243589/4834,截位变为243589/483或243589/48,简化运算。
2、如何使用截位直除法
既然可以对分母进行截位,那具体截几位 这是根据选项判断的。
当选项的首位不同时,分母从左向右截取前两位计算。既然选项首位不同,那也就是说明选项差距比较大,那我们可以采用分母从左到右保留两位的计算方法,提高我们的运算速度。
当选项的首二位不同时,分母从左向右截取前三位计算。比如说选项出现都是以2开头的数字,但是第二位各不相同,这种说明精确度又提高了一些,那我们采用保守的留三位的做法,具体方法也是分母从左向右截取前三位计算。
当选项首二位都相同,或者选项本身很接近时,需要进行精确计算。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【截位法怎么判断算出来的值是大于答案还是小于答案】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
