2024国家公务员考试行测指导:牢记题型特征解决多者合作问题

 2024-12-10 08:00:01  阅读 420  评论 0

摘要:工程问题中的多者合作问题在考试中比较常见,它的题型特征十分明显,且解题思路十分清晰。今天就带大家来了解下多者合作问题的题型特征及解题思路。多者合作指的是多个主体通过一定方式合作完成工作的问题。解决多者合作的思路,关键在于梳理出题干描述的不同合作方式,并结合

工程问题中的多者合作问题在考试中比较常见,它的题型特征十分明显,且解题思路十分清晰。今天就带大家来了解下多者合作问题的题型特征及解题思路。

多者合作指的是多个主体通过一定方式合作完成工作的问题。解决多者合作的思路,关键在于梳理出题干描述的不同合作方式,并结合工作量一定来建立等量关系。在这个解题思路的前提下,根据题目已知条件的不同,通过设特值的方法,来快速求解题目。

2024国家公务员考试行测指导:牢记题型特征解决多者合作问题

例1

将A、B、C三个水管打开向水池放水,水池24分钟可以灌满;将B、C、D三个水管打开向水池放水,水池30分钟可以灌满;将A、D两个水管打开向水池放水,水池40分钟可以灌满。如果将A、B、C、D四个水管打开向水池放水,水池需多少分钟可以灌满?

A.50 B.40 C.30 D.20

解析D。题目最后求灌满水池的时间,时间=工作量÷工作效率。题干中既不知道工作量也不知道对应的工作效率,只知道一些其他工作方式的工作时间,设出工作量或者工作效率中的一个,另一个就可以表示出来。因为不同合作方式效率各不相同,但工作量是相同的,所以设工作量表示工作效率会更方便。并且工作量要除以工作时间,所以设工作量为时间的最小公倍数会方便计算。综上可以设工作量为24、30、40的最小公倍数120,则选择D项。

小结:当多者合作题目中只给了完工时间,求其他完工时间,可以设工作总量为已知完工时间的最小公倍数,再列式求解。

例2

甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束。问丙队在A工程中参与施工多少天?

A.6 B.7 C.8 D.9

解析A。题目求丙队在A工程中参与施工的天数,时间=工作量÷工作效率,和上道题目类似,我们需要设工作量和工作效率当中的一个。这道题中已知不同工程队的效率比,只需要设出比例中每一份的量便可以知道每个工程队的效率,结合工作时间可以表示出工作量。而设每一份为1会让计算最简便,综上可以设甲队的效率为6、乙队的效率为5、丙队效率为4。设丙队在A工程中参与施工t天,根据A、B两项工程工作量相同可以列出方程6×16+4t=5×16+4(16-t),解得t=6,选择A选项。

小结:当多者合作题目中已知多个主体的效率关系,可以根据效率关系,设效率为效率的最简比,再列式求解。

总结:

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2024国家公务员考试行测指导:牢记题型特征解决多者合作问题】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/510592.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.1763秒, 内存占用1.98 MB, 访问数据库26次

陕ICP备14005772号-15