找等量关系方法如下:
一、从关键句入手找等量关系。
关键句是应用题反映数量关系的核心。解题前~要认真审题~从题中找出关键句~再把关键句用语言文字等式表示出来~从而列出方程~如:某班有女生38人~比男生的2倍多4人~男生有多少人,

把关键句“比男生人数的2倍多4人”替换成女生人数,男生人数×2,4或女生人数,4,男生人数×2~可分别得到方程2x+4=38~2x=38-4。
二、借助基本等量关系列方程
学习列方程应用题之前~要熟记“速度×时间,路程~单价×数量,总价~工作效率×工作时间,工作量~总数量 总份数,平均数”等基本数量关系。通过这些基本数量关系分析三者的关系而列出方程。
三、根据计算公式列方程:
我们在几何初步知识的学习中掌握了一些计算公式~这些公式就是一种等量关系。如:平行四边形面积、三角形面积、梯形面积、圆面积公式。
四、画线段图找等量关系:
一幅规范的线段图清晰直观地再现题目的数量关系~可以从中找出等量关系。
五、利用计算性质找等量关系:
在四则计算中~我们已经学习了运算定律性质~这些定律性质实质上体现了一种等量关系~根据它可以列出方程~如某数除以9商7余5~它除以10商6余几,
根据“被除数,商×除数,余数”得方程:10×6+x=9×7+5
六、根据几何图形特征找等量关系。
特殊的几何形体都是有某些特征~根据这些特征能寻到等量关系从而列出方程~如:一个等腰三角形顶角有40度~一个底角是多少度,
等腰三角形具有两底角相等的特征~从而得到等量关系:一个底角的度数×2,顶角的度数,180度~可得方程:2x+40=180。 七、从题目叙述的事理中找等量关系。
不少顺叙题目~可边读题目边将它提炼成文字叙述等式~根据题意列出方程~如~商店原有74千克水果糖~又运来25千克~卖了一天以后还剩下63千克。这一天卖了多少千克,
边读边提炼为:原有的,运来的,卖了的,剩下的~得方程:74,25,,63
八、根据“同一量”找等量关系
有的题目~尽管其他情节发生了变化~但叙述前后都指向某“同一量”~这“同一量”前后相等~如~某车从甲地到乙地计划每小时行35千米~6小时到达~实际提前2小时到达~每小时要行多少千米,
题中的时间~速度虽然发生了变化~但计划与实际行驶的路程都是甲乙两地相距的路程~即计划行驶的路程,实际行驶的路程~因而可得方程:(6-2)x=35×6.
五种基本类型的解题方法:
一、 求:一个数的百分之几是多少?
方法:单位1×对应分率 = 比较量
一、 已知一个数的百分之几是多少,求这个数。
方法:比较量÷对应分率=单位1;
或设这个数(单位1)为X,用方程解。
三、 条件中有“ 比 多(少)百分之几(几分之几)”,
求:标准量(单位1)或比较量?
方法: (1)单位1±单位1× n% =比较量
(2)单位1×(1±n%) =比较量
(3)比较量÷(1±n%)=单位一
找准单位一是关键。单位一是已经条件的用方法(1)(2),未知的用方法(3),设标准量为X。
四、求:“ 比 多(少)百分之几(几分之几)”?
方法:相差数÷单位1
五、 是(占、相当于) 的百分之几(几分之几)”
方法:比较量÷单位1
(提示:在出油率、发芽率、正确率、成活率、出勤率、含盐率等题目中,单位“1”是总数,即整体量。)
1、根据问题本身的物理意义和实际意义建立数量关系式;
2、根据数学本身的逻辑关系、已知的结论,概念间的联系等建立数量关系;
原则地讨论这个问题总是泛泛的,只有在解决问题中多总结多体会才是正途。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【怎么找等量关系】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
