公务员考试的资料分析题应该怎么做呢?

 2024-12-13 01:54:01  阅读 932  评论 0

摘要:一、标记关键词,提点全文资料分析题的篇幅较长,里面含有大量的信息点。但是考场如战场,在考场上的每一秒钟都是宝贵的,若精读每一个字段是很浪费时间的,也没有这个必要。所以快速阅读全文并标记关键词对下面的精读和答案的选择有着至关重要的作用。细说一下,就是在阅读材

一、标记关键词,提点全文

资料分析题的篇幅较长,里面含有大量的信息点。但是考场如战场,在考场上的每一秒钟都是宝贵的,若精读每一个字段是很浪费时间的,也没有这个必要。所以快速阅读全文并标记关键词对下面的精读和答案的选择有着至关重要的作用。细说一下,就是在阅读材料信息时可以标记一下标题、地点、时间、哪些单位部门、具体事件的关键名词。在文字材料或图表下方的注释说明文字,必须特别引起我们的注意。在综合类的材料段落之间,数据都有相互引用的有关联的词语,这个也要着重标记。

二、区分专业术语,掌握相关列式

公务员考试的资料分析题应该怎么做呢?

在资料分析题中有许多专业术语,并且很多都很近似,容易造成考生概念混淆,所以也会有一些考生在考试过程因为不清楚概念含义、概念混淆列不出计算公式从而导致失分。因此建议广大考生在备考时一定要把一些高频概念、常考列式熟记于心。

三、掌握题型及技巧

在资料分析题部分,无外乎以下几种类型:

1、快速阅读材料,立刻对答案做出判断,有的可以在文中直接找出。

2、根据关键的术语,进行公式的代入计算。

3、有些题目要对整篇材料进行快速阅读,对相关数据进行分析处理,运用计算得到正确答案。为节约时间,有些题的计算结果还可以四舍五入,选取最为相近的答案。

四、关于计算的技巧

因为在此部分的计算数据比较繁琐,有百分号的计算会涉及小数部分,所以在计算方面可以利用首数和尾数法(计算结果的前几位或后几位),还可以用特征数字法(为了简化计算把百分数转化为分数)、同位比较法、错位加减法来估算结果。

差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。

适用形式:

两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。

基础定义:

在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。

“差分法”使用基本准则——

“差分数”代替“大分数”与“小分数”作比较:

1、若差分数比小分数大,则大分数比小分数大;

2、若差分数比小分数小,则大分数比小分数小;

3、若差分数与小分数相等,则大分数与小分数相等。

比如上文中就是“11/1.4代替324/53.1与313/51.7作比较”,因为11/1.4>313/51.7(可以通过“直除法”或者“化同法”简单得到),所以324/53.1>313/51.7。

特别注意:

一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;

二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。

三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。

四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。

例1比较7/4和9/5的大小

解析运用“差分法”来比较这两个分数的大小关系:

大分数 小分数

9/5 7/4

9-7/5-1=2/1(差分数)

根据:差分数=2/1>7/4=小分数

因此:大分数=9/5>7/4=小分数

李委明提示:

使用“差分法”的时候,牢记将“差分数”写在“大分数”的一侧,因为它代替的是“大分数”,然后再跟“小分数”做比较。

例2比较32.3/101和32.6/103的大小

解析运用“差分法”来比较这两个分数的大小关系:

小分数 大分数

32.3/10132.6/103

32.6-32.3/103-101=0.3/2(差分数)

根据:差分数=0.3/2=30/200<32.3/101=小分数(此处运用了“化同法”)

因此:大分数=32.6/103<32.3/101=小分数

[注释] 本题比较差分数和小分数大小时,还可采用直除法,读者不妨自己试试。

李委明提示(“差分法”原理):

以例2为例,我们来阐述一下“差分法”到底是怎样一种原理,先看下图:

上图显示了一个简单的过程:将Ⅱ号溶液倒入Ⅰ号溶液当中,变成Ⅲ号溶液。其中Ⅰ号溶液的浓度为“小分数”,Ⅲ号溶液的浓度为“大分数”,而Ⅱ号溶液的浓度为“差分数”。显然,要比较Ⅰ号溶液与Ⅲ号溶液的浓度哪个大,只需要知道这个倒入的过程是“稀释”还是“变浓”了,所以只需要比较Ⅱ号溶液与Ⅰ号溶液的浓度哪个大即可。

例3比较29320.04/4126.37和29318.59/4125.16的大小

解析运用“差分法”来比较这两个分数的大小关系:

29320.04/4126.37 29318.59/4125.16

1.45/1.21

根据:很明显,差分数=1.45/1.21<2<29318.59/4125.16=小分数

因此:大分数=29320.04/4126.37<29318.59/4125.16=小分数

[注释] 本题比较差分数和小分数大小时,还可以采用“直除法”(本质上与插一个“2”是等价的)。

例4下表显示了三个省份的省会城市(分别为A、B、C城)2006年GDP及其增长情况,请根据表中所提供的数据回答:

1.B、C两城2005年GDP哪个更高?

2.A、C两城所在的省份2006年GDP量哪个更高?

GDP(亿元)

GDP增长率

占全省的比例

A城

873.2

12.50%

23.9%

B城

984.3

7.8%

35.9%

C城

1093.4

17.9%

31.2%

解析一、B、C两城2005年的GDP分别为:984.3/1+7.8%、1093.4/1+17.9%;观察特征(分子与分母都相差一点点)我们使用“差分法”:

984.3/1+7.8% 1093.4/1+17.9%

109.1/10.1%

运用直除法,很明显:差分数=109.1/10.1%>1000>984.3/1+7.8%=小分数,故大分数>小分数

所以B、C两城2005年GDP量C城更高。

二、A、C两城所在的省份2006年GDP量分别为:873.2/23.9%、1093.4/31.2%;同样我们使用“差分法”进行比较:

873.2/23.9%1093.4/31.2%

220.2/7.3%=660.6/21.9%

212.6/2%=2126/20%

上述过程我们运用了两次“差分法”,很明显:2126/20%>660.6/21.9%,所以873.2/23.9%>1093.4/31.2%;

因此2006年A城所在的省份GDP量更高。

例5比较32053.3×23487.1和32048.2×23489.1的大小

解析32053.3与32048.2很相近,23487.1与23489.1也很相近,因此使用估算法或者截位法进行比较的时候,误差可能会比较大,因此我们可以考虑先变形,再使用“差分法”,即要比较32053.3×23487.1和32048.2×23489.1的大小,我们首先比较32053.3/23489.1和32048.2/23487.1的大小关系:

32053.3/23489.132048.2/23487.1

5.1/2

根据:差分数=5.1/2>2>32048.2/23487.1=小分数

因此:大分数=32053.3/23489.1>32048.2/23487.1=小分数

变型:32053.3×23487.1>32048.2×23489.1

李委明提示(乘法型“差分法”):

要比较a×b与a′×b′的大小,如果a与a'相差很小,并且b与b'相差也很小,这时候可以将乘法a×b与a′×b′的比较转化为除法ab′与a′b的比较,这时候便可以运用“差分法”来解决我们类似的乘法型问题。我们在“化除为乘”的时候,遵循以下原则可以保证不等号方向的不变:

“化除为乘”原则:相乘即交叉。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【公务员考试的资料分析题应该怎么做呢?】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/550105.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0348秒, 内存占用2.01 MB, 访问数据库22次

陕ICP备14005772号-15