这是一错排问题。
D(n) = (n-1) [D(n-2) + D(n-1)]
特殊地,D(1) = 0, D(2) = 1.

D1=0
D2=1
D3=2*(0+1)=2
D4=3*(1+2)=9
D5=4*(2+9)=44
D6=5*(9+44)=265
D7=6*(44+265)=1854
D8=7(265+185)=14833
D9=8*(1854+14833)=133496
全错位排列公式如下:
当k排在第n位时,除了n和k以外还有n-2个数,其错排数为Dn-2。
当k不排在第n位时,那么将第n位重新考虑成一个新的“第k位”,这时的包括k在内的剩下n-1个数的每一种错排,都等价于只有n-1个数时的错排(只是其中的第k位会换成第n位)。其错排数为Dn-1。
介绍:
对于情况较少的排列,可以使用枚举法。
当n=1时,全排列只有一种,不是错排,D1= 0。
当n=2时,全排列有两种,即1、2和2、1,后者是错排,D2= 1。
当n=3时,全排列有六种,即1、2、3;
1、3、2;
2、1、3;
2、3、1;
3、1、2;
3、2、1,其中只有有3、1、2和2、3、1是错排,D3=2。用同样的方法可以知道D4=9。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【排列组合错排怎么理解】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
