2023国家公务员考试行测数量关系多者合作不会算请看这里

 2024-12-17 23:09:01  阅读 858  评论 0

摘要:举例生产一批零件,甲车间每天生产100个,乙车间每天生产50个。若两车间合作,8天可以完成,这批零件共有多少个?在上述例子中两车间合作就会涉及到二者效率加和,这就是一个简单的多者合作问题。对于这类问题,我们往往有两种特值方式:对工作总量进行特值或对工作效率进行特
举例

生产一批零件,甲车间每天生产100个,乙车间每天生产50个。若两车间合作,8天可以完成,这批零件共有多少个?

在上述例子中两车间合作就会涉及到二者效率加和,这就是一个简单的多者合作问题。对于这类问题,我们往往有两种特值方式:对工作总量进行特值或对工作效率进行特值。

2023国家公务员考试行测数量关系多者合作不会算请看这里

特值工作总量

若完成同一项工程(或相同的工作总量)时,对应有若干时间时,我们可以将工作总量特值为时间们的最小公倍数,进而表示出效率。

例1

手工制作一批元宵节花灯,甲、乙、丙三位师傅单独做分别需要40小时、48小时、60小时完成。若三位师傅共同制作4小时后,剩余任务由乙、丙一起完成,则乙在整个过程中投入的时间是多少小时?

A.24 B.25 C.26 D.28

答案A。解析:对于同一项工程,出现单独完成的时间们:40小时、48小时和60小时,根据特值我们可以令工作总量为时间们的最小公倍数240,那么甲、乙、丙效率分别为6、5、4。三人合作4小时完成(6+5+4)×4=60个工作量,则剩余240-60=180个工作量由乙、丙完成,还需要180÷(5+4)=20小时。则乙在整个过程中投入4+20=24小时。

特值工作效率

当题目中出现多者的效率比(或者我们可以推导出效率比)时,我们可以根据比例将各自的效率特值为最简整数,进而表示出工作总量。

例2

甲、乙、丙三人完成一项任务的效率比为2:3:4。该项任务若由甲、乙两人共同合作完成需要12天;若甲先做了2天后退出,余下的由乙、丙合作完成,则完成这项任务共需要多少天?

A.10 B.9 C.8 D.7

答案A。解析:根据题目中三人效率比进行特值,令甲的效率为2,乙的效率为3,丙效率为4,则工作总量为甲、乙二人效率和乘以12天,即(2+3)×12=60。甲先做两天完成2×2=4个工作量,还剩余60-4=56个工作量。接着由乙、丙合作还需要56÷(3+4)=8天,再加上甲先做的2天共计8+2=10天。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2023国家公务员考试行测数量关系多者合作不会算请看这里】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/620457.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0351秒, 内存占用1.98 MB, 访问数据库22次

陕ICP备14005772号-15