行测工程问题等量关系复杂时如何使用特值法

 2024-12-18 08:15:02  阅读 449  评论 0

摘要:当已知多个主体效率的倍数关系时,可将效率关系转化为nA=mB(A、B表示不同合作主体的效率),设A为m,B为n。例1一项工程由甲、乙、丙三个工程队共同完成需要22天,甲队工作效率是乙队的倍,乙队3天的工作量是丙队2天工作量的。三队同时开工,2天后,丙队被调往另一工地,那么甲

当已知多个主体效率的倍数关系时,可将效率关系转化为nA=mB(A、B表示不同合作主体的效率),设A为m,B为n。

例1

一项工程由甲、乙、丙三个工程队共同完成需要22天,甲队工作效率是乙队的倍,乙队3天的工作量是丙队2天工作量的。三队同时开工,2天后,丙队被调往另一工地,那么甲、乙再干多少天才能完成该工程?

行测工程问题等量关系复杂时如何使用特值法

A.20 B.28 C.38 D.42

答案C。解析:根据甲队工作效率是乙队的倍,可设乙队的效率为2,则甲队的效率为3,设丙队的效率为x,则有2×3=x×2,解得x=4.5。设甲、乙再干t天才能完成该工程,则有(3+2+4.5)×22=(3+2+4.5)×2+(3+2)×t,解得t=38。

根据不同工作方式的工作量相等建立等量关系后可推出,形如nA=mB(A、B表示不同合作主体的效率)的效率关系,设A为m,B为n。

例2

有一项工程甲公司花6天,乙公司再花9天可以完成,或者甲公司花8天,乙公司再花3天可以完成,如果这项工程由甲或乙单独完成,则甲公司所需天数比乙公司少多少天?

A.15 B.18 C.24 D.27

答案B。解析:用甲、乙分别表示两公司的工作效率,根据不同工作方式下工作总量不变可得,6×甲+9×乙=8×甲+3×乙,化简可得,甲=3乙,设甲=3,乙=1,则工作总量为6×3+9×1=27,甲单独完成需要27×3=9天,乙单独完成需要27×1=27天,所以甲公司所需天数比乙公司少27-9=18天。

下边我们用一道例题来检验一下大家的学习成果吧。

例3

A、B两台高性能计算机共同运行30小时可以完成某个计算任务。如两台计算机共同运行18小时后,A、B计算机分别抽调出20%和50%的计算资源去执行其他任务,最后任务完成的时间会比预计时间晚6小时。如两台计算机运行18小时后,由B计算机单独运行,还需要多少小时才能完成该任务?

A.22 B.24 C.27 D.30

答案C。解析:用A、B分别表示两台计算机的效率,则有30×(A+B)=18×(A+B)+(80%A+50%B)×(30-18+6),化简得4A=5B,设A、B分别为5、4,则两台机器运行18小时后剩余的工作量为(30-18)×(5+4)=12×9,B单独完成需要12×9×4=27小时。

相信大家通过上述三道题目,能对复杂等量关系下如何使用特值法有所了解,建议大家在备考期间需多多练习,真正做到熟练掌握这类问题。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【行测工程问题等量关系复杂时如何使用特值法】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/625930.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0357秒, 内存占用1.98 MB, 访问数据库22次

陕ICP备14005772号-15