在这里需要注意的是,此类隔板模型问题就是将n个相同元素分给m个不同的对象,每个对象至少分得1个,且没有剩余。则假设将n个元素一字排开,中间产生出n-1个空,用m-1个木板放入n-1个空中,就是分配方法的总数,即共有
1、所要分的元素必须完全相同

2、所要分的元素必须分完,决不允许有剩余
3、每个对象至少分到1个,决不允许出现分不到元素的对象
公司采购了一批同一型号的新电脑,总共11台,计划分给公司内的4个部门,每个部门至少分得一台,最终要将电脑分完,那么总共有多少种分配方法?
A.100 B.110 C.120 D.130
将15个完全相同的小球放入编号为1,2,3,4的四个盒子中,要求每个盒子中的小球数量不得小于其自身的编号数字,且不得有剩余的小球。那么有多少种分配方法?
A.48 B.56 C.64 D.72
参考答案B。
教师节当天,某班级准备了8捧相同的花,送给4位老师,要求随意分,分完即可,共有多少种分配方法?
A.145 B.155 C.165 D.175
参考答案C。
解析这个排列组合问题中,显然8捧相同的花对应条件中8个相同的元素,4位老师对应4个不同的对象,分完即可表明没有剩余,但随意分意味着并不是每一位老师至少分得一捧花,有可能某老师并没有分到花,所以此时我们仍需要将条件进行转换。这里假设,这个班级又借来4捧花,现在就有12捧花,则此时如果按照每位老师至少分得1捧,最后再从每位老师手中收回一捧花,则既满足我们公式的条件,又没有改变分配结果。故相当于求将12捧花分给4位老师,每位老师至少分得一捧的情况数,直接用公式求得:
经过这三个题目的学习,相信大家以后再遇到排列组合问题中的隔板模型,做起来一定会得心应手。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2023国家公务员考试行测指导:学会隔板模型】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
