求错位排列的公式

 2024-12-21 17:18:01  阅读 528  评论 0

摘要:给你看道几乎一样的题目五个编号为1~5的小球放进5个编号为1~5的小盒里面,全错位排列(即1不放1,2不放2,依次类推)一共有多少种放法这是著名的信封问题,很多著名的数学家都研究过瑞士数学家欧拉按一般情况给出了一个递推公式:用A、B、C……表示写着n位友人名字的信封,a、b、c

给你看道几乎一样的题目五个编号为1~5的小球放进5个编号为1~5的小盒里面,全错位排列(即1不放1,2不放2,依次类推)一共有多少种放法这是著名的信封问题,很多著名的数学家都研究过瑞士数学家欧拉按一般情况给出了一个递推公式:用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸.把错装的总数为记作f(n).假设把a错装进B里了,包含着这个错误的一切错装法分两类:

(1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法.(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的)份信纸b、c……装入(除B以外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种.总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种.a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:f(n)=(n-1){f(n-1)+f(n-2)}这是递推公式,令n=1、2、3、4、5逐个推算就能解答蒙摩的问题.f(1)=0f(2)=1f(3)=2f(4)=9f(5)=44答案是44种错位排列就是给自己的不算,来排列

您好, 中政行测 和 中政申论 备考平台为您解答!

求错位排列的公式

D(n)表示n封信装到n个信封中,每封信都装错了的方法总数。先看1封信,很明显,一封信不可能装错,故D(1)=0;再看2封信,A到B,B装到A,只有一种装错的可能,故D(2)=1;如果是3封信,则要分步考虑,第一步看A,可能装错到B和C的信封,2种可能,剩下2封只有1种可能,分步用乘法,共2*1=2种。如果是4、5……n封,同样利用分步原理求解即可。但一般情况下,不建议大家真的去算,记住 “D1=0 D2=1 D3=2D4=9 D5=44 D6=265”这几个常考的就行。

如仍有疑问,欢迎向"中政行测在线备考平台"和"中政申论在线备考平台"提问,我们会及时解答。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【求错位排列的公式】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/659537.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0856秒, 内存占用1.98 MB, 访问数据库22次

陕ICP备14005772号-15