公考行测数学运算解题方法系列之行程问题

 2024-12-23 21:03:01  阅读 866  评论 0

摘要:路程问题分为相遇问题、追及问题和流水问题。流水问题我们会在以后单独解析。这里我们先一起来探讨和学习相遇和行程问题。 相遇问题要把握的核心是“速度和”的问题,即A、B两者所走的路程和等于速度和相遇时间。 追及问题要把握的核心是“速度差”的问题,即A走的路程减去B走

路程问题分为相遇问题、追及问题和流水问题。流水问题我们会在以后单独解析。这里我们先一起来探讨和学习相遇和行程问题。

相遇问题要把握的核心是“速度和”的问题,即A、B两者所走的路程和等于速度和×相遇时间。

追及问题要把握的核心是“速度差”的问题,即A走的路程减去B走的路程等于速度差×追及时间。

公考行测数学运算解题方法系列之行程问题

应用公式:速度和×相遇时间=相遇(相离)路程

速度差×追及时间=路程差

下面是专家组为各位考生精解的四道例题,请大家认真学习:

例1甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。又知甲的速度比乙的速度快,乙原来的速度为( )

A.3千米/时

B.4千米/时

C.5千米/时

D.6千米/时

答案B。

解析这是一道典型的相遇问题。方法一:原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。注意:在解决这种问题的时候一定要先判断谁的速度快,头脑反应要灵活,时刻谨记速度和和速度差的问题。

方法2:提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。

例2一条长400米的环形跑道,欣欣在练习骑自行车,他每分钟行560米,彬彬在练长跑,他每分钟跑240米,两人同时从同地同向出发,经过多少分钟两人可以相遇?

A.1min

B.1.25min

C.1.5min

D.2min

答案B。

解析这是一道环形追及问题,追上时跑得快的人恰好比跑得慢的多跑一圈(即多跑400米),根据追及问题基本关系式就可求出时间了即400÷(560-240)=400÷320=1.25(分)

专家点评:相遇问题和追击问题又分为直线和封闭线路两类。直线上的相遇与追及问题比较简单,而封闭环形的相遇与追及问题是近几年考察较多的题型。解决这类问题关键是要掌握从同时出发到下次追及的路程恰是一周长度,并弄清速度、时间、路程之间的关系。

例3甲、乙两人联系跑步,若让乙先跑12米,则甲经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?

A.15

B.20

C.25

D.30

答案C。

解析甲乙的速度差为12÷6=2m/s,则乙的速度为2×5÷2=5m/s,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25m。

例4一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。有一个人从乙站出发沿电车线路骑车前往甲站。他出发的时候,恰好有一辆电车到达乙站。在路上他又遇到了10辆迎面开来的电车。到达甲站时,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了( )分钟。

A.41

B.40

C.42

D.43

答案B。

解析骑车人一共看到12辆车,他出发时看到的是15分钟前发的车,此时第4辆车正从甲发出。骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是5X8=40(分钟)。

专家点评:例三和例四中的行程问题比较复杂,难解。行程问题是数学运算里较难的一种题型。这类题型千变万化,比较复杂,计算也比较困难。因此考生在遇到这类题型时一定要学会灵活变通,如果这道题是比较传统易解得,我们要把握住。如果是很复杂,无从入手,那么就要学会放弃。谨记不能在这类题上浪费过多宝贵的时间。

行程问题这类题型着实复杂且变化较多。专家建议考生们在做题时要分析此类题的难易程度,学会放弃。当然我们也不能在没做题之前就选择放弃。如果这类题是传统的不复杂的,常见的,我们就要把握住。

下面是专家组为大家精选5道有关行程问题的练习题。希望大家认真做题,掌握方法。

1、一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为()

A.44千米

B.48千米

C.30千米

D.36千米

2、甲、乙两人联系跑步,若让乙先跑12米,则甲经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?

A.15

B.20

C.25

D.30

3、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了( )分钟。

A.43

B.48.5

C.42.5

D.44

4、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发( )分钟。

A. 30

B. 40

C. 50

D. 60

5、某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。问汽车的速度是劳模步行速度的( )倍。

A. 5

B. 6

C. 7

D. 8

答案:

1、-5 ACCCA

答案和解析:

1、答案及解析A。顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12 解得X=44。

2、答案及解析C。 甲乙的速度差为12/6=2米/秒,则乙的速度为2×5/2=5米/秒,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25米。

3、答案及解析C。 全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟

4、 答案及解析C。法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有, (60+40)x=60[y+(x-30)]+40(x-30), y=50

方法2、甲提前走的路程=甲、乙 共同走30分钟的路程,那么提前走的时间为,30(60+40)/60=50

5、 答案及解析A。方法1、方程法,车往返需1小时,实际只用了30分钟,说明车刚好在半路接到劳模,故有,车15分钟所走路程=劳模75分钟所走路程(2点15-1点)。设劳模步行速度为a,汽车速度是劳模的x倍,则可列方程,75a=15ax,解得 x=5。

方法2、由于, 车15分钟所走路程=劳模75分钟所走路程,根据路程一定时,速度和时间成反比。所以 车速:劳模速度=75:

1、5=5:

1、

您好,中公教育为您服务。

公务员考试中,数量关系历来是考生备感头疼的题型,其主要有两大题型,一是数字推理,二是数学运算。

数字推理主要是考察应试者对数字和运算的敏感程度。本质上来看,是考察是考生对出题考官的出题思路的把握,因为在数字推理中的规律并非“客观规律”,而是出题考官的“主观规律”,也就是说,在备考过程中,不能仅从数字本身进行思考,还必须深入地理解出题者的思路与规律。

数学运算的知识点繁杂,需要系统梳理,并且要明确考试目的——数学运算题并不一定要把最后的答案算出来,而是要把正确答案“选”出来,因此,掌握做题的技巧十分重要。有时一道题按常规的方法“算”出来可能需要五六分钟甚至更长的时间,但把正确答案“选”出来只需要20秒钟。

数学运算基本题型众多,每一基本题型都有其核心的解题公式或解题思路,应通过练习不断熟练。在此基础上,有意识培养自己的综合分析能力,即在复杂数学运算题面前,能够透过现象看到本质,挖掘其中深层次的等量关系。

从备考内容来看,无论是数字推理还是数学运算,都需要从思路和技巧两方面来着手准备。 下文从思路和技巧两方面总结了数量关系备考三阶段需要做的事情。

一、数量关系解题思路

思路是指对于各类题型的解题思路,由于数量关系涉及的题型众多,因而必须对各类题型都达到一个比较熟练的程度,尤其是常见的一些题型。

例1:

1、9991998的末位数字是( )[2005国家公务员考试行政职业能力测验真题一类-38题]

A.1 B.3 C.7D.9

解析:求1999的1998次方的个位数,实际上就是求9的1998次方的个位数,由于对于任何数字的多次方,都呈现四个一循环的规律,因而就是求9的平方的末位数,轻松得到A答案。

对于这类题,如果备考时没有熟悉掌握做题的方法,考试中很难算出正确的答案。

二、数量关系解题技巧

例2:现有一种预防禽流感药物配置成的甲、乙两种不同浓度的消毒的消毒溶液。若从 甲中取 2100 克、乙中取 700 克混合而成的消毒溶液的浓度为

3%;若从甲中取 900 克、乙 中取 2700 克,则混合而成的消毒溶液的浓度为 5%。则甲、乙两种消毒溶液的浓度分别为(

)[2006年浙江公务员考试行政职业能力测验真题-37题]

  A.3%,6%B.3%,4%C.2%,6%D.4%,6%

解析:甲、乙溶液进行两次混合,两次得到的溶液的浓度分别为3%和5%,则这两种溶液只能在3%和5%这个区间之外,因此轻松选C。所以,掌握各种做题技巧,能大大提高解题的速度。

数量关系的复习绝不可能是一朝一夕之功,高效解题必须熟练掌握基础知识和基本题型,这也是数量关系备考的核心所在。备考过程中,不要急于求成,而应一步一个脚印,脚踏实地,稳步提升。

三、数量关系备考三阶段

从备考的过程来看,可以分为三个阶段:广泛积累阶段、总结提高阶段、模拟冲刺阶段。

1、广泛积累阶段

积累阶段需要尽可能多地收集各类题型,要深入了解国家公务员考试以及各地公务员考试的出题特点和题型分布情况。这个阶段需要的时间长短依据考自身的情况而定,一般需要两个月左右的时间。

从近两年国家及各省市公务员考试真题来看,数量关系呈现出以下几特征:

(1)数列形式数字推理是数字推理的主体形式。国家公务员考试只考查数列形式数字推理,多数省市公务员考试也以考查数列形式数字推理为主,而北京、福建、江苏等地考试中则常出现图形形式数字推理。

(2)从各类公务员考试真题来看,等差数列及其变式、多次方数列及其变式出现最广,如2009年国家公务员考试考查了4道等差数列及其变式、2010年国家公务员考试又再次考查;浙江公务员考试几乎每年都会考查等差数列及其变式、多次方数列及其变式。

(3)数学运算的考查地方特色明显。从真题分析来看,数学运算的考查因地而异,侧重点也各不相同。如国家公务员考试几乎不考间隔组合数列,但几乎每年都出现牛吃草问题、排列组合问题;浙江公务员考试中数字推理考查的规律极为广泛,基本数列及其变式几乎都会涉及,数学运算则稳定有2-3道计算问题。

2、总结提高阶段

在积累阶段,要逐步各类题型的解题思路。如,对于数字推理就有作差法、作商法、作和法、作积法、转化法、拆分法、位置分析法,务必使这些解题方法融会贯通、灵活运用。

建议考生根据学习、做题过程中发现的问题,找清自己的薄弱环节,尤其要注意“常做常错”的题型,根据自己的情况,制作“错题本”或“典型题本”,在最后的备考冲刺阶段,这将成为自己的致胜法宝。

3、模拟冲刺阶段

勤于练习,举一反三,有意识地培养数字直觉和运算直觉,这是解决数字推理问题的核心所在。

在模拟冲刺阶段,考生需要每天定量做一些相关的模拟题,模仿书中对题的分析,通过解答模拟题来培养对数学运算的感觉,这种感觉不仅能够提高数学运算的解题速度和正确率,对数字推理部分也很有帮助。

再就是选择行政职业能力测验专项教材。通过数量关系的专项训练,夯实两大部分的基础知识,综合提高才是获得高分的根本保障。

对于每个考生而言,自身对数量关系的熟悉程度不同,运算的熟练程度也不同,在备考的过程中,必须根据自身的特点,有机地进行积累与总结的轮换,才能在一轮一轮的备考中做到心中有数,才能在考场上立于不败之地。

希望可以帮到您!

如有疑问,欢迎向中公教育企业知道提问。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【公考行测数学运算解题方法系列之行程问题】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/690584.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.5051秒, 内存占用2.09 MB, 访问数据库45次

陕ICP备14005772号-15