我国拿下哪一项“制芯”关键技术?

 2025-02-18 02:09:02  阅读 154  评论 0

摘要:“PM2.5,是大家很熟悉的微小颗粒物,直径小于或等于2.5微米。但我们研制这种制造芯片的关键材料,在过程中如果进入了哪怕PM1.0的粉尘,这个材料就是废品,就不能被应用到芯片当中。”唐一林简单一句话,道出了集“超纯净”与“超均匀”于一体的制芯新材料——“光刻胶用线性

“PM2.5,是大家很熟悉的微小颗粒物,直径小于或等于2.5微米。但我们研制这种制造芯片的关键材料,在过程中如果进入了哪怕PM1.0的粉尘,这个材料就是废品,就不能被应用到芯片当中。”

唐一林简单一句话,道出了集“超纯净”与“超均匀”于一体的制芯新材料——“光刻胶用线性酚醛树脂”对环境的苛刻要求。5月初,这位亚洲最大酚醛树脂生产基地的掌舵者告诉媒体,历时26年,用于芯片制作的国产高端电子树脂研制成功。专家认为,这种高端材料打破了美日等国垄断,可大大加速我国自主芯片的研制进度。

据了解,“光刻胶用线性酚醛树脂”的国产化成功,已经让数家光刻胶企业(“芯片”上游企业)慕名而来,采购这种“制芯”用的高端材料。

我国拿下哪一项“制芯”关键技术?

“以前并没有觉得电子树脂的市场可以如此之大,主要将其应用在印制电路板领域。但随着中兴事件发酵,以及自主芯片热的再度升温,让我们看到中国发展高端电子树脂的迫切性。”项目研制者之一、圣泉酚醛树脂研究所所长李枝芳告诉媒体,“‘中国芯’难产的背后,也暴露出中国高端材料长期依赖进口,以致于被人卡脖子的窘境。”

作为芯片的核心材料,光刻胶及光刻胶用树脂的技术曾长期由国外垄断,中国长期依赖进口。1992年,唐一林开始组建团队,着手酚醛树脂的研发,并尝试进行生产,但由于生产装备落后,不掌握核心技术等原因,他们经历了许多挫折,未能做出好的产品。无奈之下,只能将目光投向海外。1997年,经过严谨甄选,多轮谈判,圣泉最终与英国海沃斯矿物及化学品有限公司达成了合作,引进了英国最先进的酚醛树脂生产技术。

“核心技术受制于人是最大的隐患,而核心技术靠化缘是要不来的,只有自力更生。”作为过来人,唐一林深刻理解这句话的内涵。

在引进外智的同时,他没有放下自主力量,引进了以原天津树脂厂总工李乃宁高工为首的一系列研发骨干;

2007年,与中科院化学所合作成立了“酚醛树脂技术研究中心”,引进并开发了包括火箭耐烧蚀材料在内的多个航天及军工项目;之后,建成了博士工作站,与多个院校开展了产学研合作;

2011年,又引进了日本先进的环氧树脂生产技术,建成了国内最大的电子级特种环氧树脂车间……

2017年,按照全球公认的独角兽划分标准,圣泉被中国证监会下属的全国中小企业股份转让系统公司官方认定为“独角兽”。而此时,他们的自主酚醛,已在多个国字号工程中充当大任。其中,先进树脂材料——轻芯钢服务于高铁、磁悬浮列车;最新开发的特种树脂和高端复合材料打破国外技术垄断,已经被应用于国家航空航天器、火箭及导弹等军工制品中;酚醛微球自“神舟八号”开始,连续被用于“神舟”系列中。

“中国从不缺乏芯片技术,也不缺乏芯片用材料,缺乏的是芯片链条上的企业拧成一股绳儿的聚合力,缺乏的是企业向深处钻研的耐力。”利用26年探索终于磨砺出自己的“制芯”关键材料。唐一林认为:“我们之所以能研发成功,就是因为这个科研团队有一股没有突破绝不回头的耐力。这可以为任重道远的中国芯片科研提供些许参考。”

高分子材料与工程专业怎样?就业前景如何?

现在所用外墙保温材料主要使用苯板、挤塑板以及聚氨酯。

苯板最便宜,保温效果一般,会吸水、发生变形,做完保温层之后需要做其他的一些防水等措施

现在所用外墙保温材料主要使用苯板、挤塑板以及聚氨酯。

苯板最便宜,保温效果一般,会吸水、发生变形,做完保温层之后需要做其他的一些防水等措施

挤塑板相较苯板要好很多,导热系数比苯板低,价格稍高一点

聚氨酯是现有保温材料里面性能最好的一种,冰箱冷库等领域的保温材料用的就是聚氨酯,导热系数远远低于苯板和挤塑板,基本上一半厚度的聚氨酯保温层就可以达到苯板和挤塑板原厚度的保温效果,不过价格要比苯板和挤塑板高出不少。

分类:

在建筑和工业中采用良好的保温技术与材料,往往能起到事办公倍的保温节能效果。目前用于四川保温材料主要有:

1,矿物棉,岩(矿)棉和玻璃棉有时统称为矿物棉,它们都属于无机材料。岩棉(矿物棉)是一种来自天然矿物、无毒无害的绿色产品。其防火性能好、耐久性好,能够做到与结构寿命同步,价格较低,在满足保温隔热性能的同时还能够具有一定的隔声效果。岩棉外墙外保温隔热的应用在欧洲、北美比较广泛,北欧人均20kg,美国人均5-10kg,岩棉外保温隔暖系统尤其实用于防火等级要求高的建筑。但岩棉的质量优劣相差很大,保温性能好的密度低,其抗拉强度也低,耐久性比较差。玻璃棉与岩棉在性能上有很多相似之处,但其手感好于岩棉,可改善工人的劳动条件。但它在中价格较岩棉为高。

2,聚苯乙烯泡沫塑料板,聚苯乙烯泡沫塑料板是以聚苯乙烯树脂为主要原料,经发泡剂发泡而制成的内部具有无数封闭微孔的材料。其表看密度小,导热系数小,吸水率低,隔音性能好、机械强度高,而且尺寸精度高,结构均匀。因此在外墙保温中其占有率很高。硬质聚氨酯泡沫塑料具有非常优越的绝热性能,它的导热系数之低(0.025W/(m2?K))是其他材料所无法与之相比的。特别是当保温隔热效能要求越高,保温隔热层要求越薄以便增加建筑物可用面积,加工、施工、保养要求越方便的情况下,聚氨酯的优越性尤其显著,同时其特有的闭孔结构使其具有更优越的耐水汽性能,由于不需要额外的绝缘防潮,简化了施工程序,降低了工程造价。但因其价格较高、而且易燃,四川保温材料中就限制了它的使用。

3,聚苯颗粒保温料浆,聚苯颗粒保温料浆是由聚苯颗粒和保温胶粉料分别按配比包装组成。胶粉料采用预混干拌技术在工厂将水泥与高分子材料、引气剂等各种添加剂混均后包装,使用时按配比加水在搅拌机中搅拌成浆体后再加渗入渗出聚苯颗粒,充分搅拌后形成塑性良好的膏状体,将其抹于墙体干燥后便形成保温性能优良的隔暖层。此种材料施工方便,保温性能良好。其中聚苯颗粒可以采用工业品,也可以采用废旧聚苯保温板经机械破碎后的颗粒,这对于防制白色污染、保护环境十分有益的。但此种保温材料吸水率较其他材料为高,使用时必须加做抗裂防水层。抗裂防水保护层材料由抗裂水泥砂浆复合玻纤网组成,可长期有效控制防护层裂缝的产生。

预防火灾:

目前,我国建筑外墙保温所用材料主要为聚苯乙烯、聚氨酯等有机材料,以及岩 棉、玻璃棉等无机材料。上述有机材料具有耐热差、耐老化性能差、易燃烧和燃烧时释放大量暖量、产生有毒烟气、加速大火蔓延等诸多缺点。上述无机材料(如纤 维保温材料有粉尘和细小纤维)既污染空气又易滋生细菌,对人身健康易造成危害。为了保证建筑采用既绝热、防火,又对人身健康无害的外墙保温材料,从各种试 验表明,酚醛泡沫可以达到这种要求。

酚醛泡沫(PhenolicFoams,简称PF)被誉为"保温之王",具有容量轻、绝热性 好、刚性大、尺寸稳定性好等特点,并且它有与铝相似的膨胀系数,属于难燃物质,燃烧时仅产生少量一氧化碳有毒气体,发烟量低、不会熔融、无滴落物,其生产 成本更是低廉。1942年,酚醛泡沫塑料已在实验室制成。二战初期,德国将酚醛泡沫用于航空工业,作为轻木的代替品。同期,英国的泡沫橡胶公司也研制出酚 醛泡沫塑料,主要用于漂浮方面。1945年,美国的联合碳化物(UCC)公司开始对低密度酚醛泡沫及其树脂的生产技术入行研究。酚醛泡沫塑料的生产方法有 湿法和干法两种。湿法是以甲阶酚醛树脂为基础,其可发性树脂体系为液态,欧美常采用此法制造酚醛泡沫塑料。湿法生产酚醛泡沫塑料中,最有代表性的是诺贝尔 炸药公司、联合碳化物(UCC)和艾斯奇姆(Icechim)等公司生产的泡沫塑料,其原料合成和泡沫制备工艺大体相同,只是控制泡沫密度的方法有所区 别。干法酚醛泡沫是以暖塑性树脂为基础,其可发性树脂体系为固态,这是前苏联首先开发研制的另一条生产路线,20世纪50年代末实现批量生产,目前应用量 也较少。

20世纪80年代,国外科学家通过对酚醛树脂及其制品进行研究,发现它们具有突出的难燃、低烟、低毒特性和优异的耐热性。 20世纪90年代以来,包括酚醛泡沫在内的酚醛复合材料得到很大发展,首先受到英、美等国家军方重视,将其用于航天航空、国防军工领域,后又被应用于民用 飞机、船舶、车站、油井等防火要求严格的场所,并逐步推向高层建筑、医院、体育设施等领域。1961年,我国兵器工业部第53研究所对干法酚醛泡沫塑料进 行了研究,并成功地应用于军工方面。20世纪80年代,我国对湿法酚醛泡沫塑料的研究开始起步,并在20世纪90年代初步实现工业化生产,较有代表性的单 位(除军工科研所外)有济南大学(原山东建材学院)、北京化工大学、山东圣泉化工股份公司、厦门高特材料公司、山东金光集团、山东华海公司等。酚醛泡沫早 期应用于导弹及火箭头的保温方面。近些年来,由于高层建筑、交通运输、舰舟、航空、空间技术等方面对合成泡沫塑料的暖稳定性和耐燃性提出了严格要求,使得 酚醛泡沫得到广泛关注和迅速发展。现在,酚醛泡沫作为一种新型的多用途泡沫材料,以其耐热、难燃、自熄、耐火焰穿透、遇火无滴落物和防止火灾蔓延的阻火性 能等优点,引起了人们的高度重视。人们重新熟悉到利用它的耐燃性制作成绝热保温材料在高层建筑、高温隔热、超低温保冷领域具有重要的实用价值。

对 人类所赖以生存的各式各类建筑物而言,安全问题始终是列于首位的。酚醛泡沫是一种性能优越的防火、隔热、隔音、轻质节能产品,其导热系数低,密度最低仅为 30~40kg/m3,并且酚醛泡沫的难燃程度是目前建筑业广泛使用的聚苯乙烯、聚氨酯等泡沫所远远不及的;

25毫米厚的酚醛泡沫平板经受1700℃的火 焰喷射10分钟后,仅表面略有炭化,却没有被烧穿,既不会着火更不会散发浓烟和毒气。法国建筑科学与技术中心曾对酚醛泡沫塑料做过全面检验,证实它抗火焰 性好,如从焊枪喷出的高达3000℃的火焰对准泡沫板,两分钟后还未记录到有明显的暖感传到板背面,无高温热分解和发烟。

酚醛泡沫优 良的抗燃烧性能主要包括两个方面:

一是防止火焰扩散的能力,即绝热材料局部产生火焰,火焰将不扩散而自行熄灭;二是材料本身的绝热性能,即使在材料一侧着 火燃烧,另一侧的温度不会升高而导致火灾范围扩大。酚醛泡沫的材质与结构决定了它即便是在焊枪火焰下,也只是发生表面炭化的现象,既不燃烧也不变形,既不 散发有害气体也无滴落物质。酚醛泡沫塑料所兼备的这些特性,使它成为最理想的新型有机保温材料,非常适合作为建筑外墙保温、屋面保温和防火门内层防火隔 热。

据有关调查结果显示,在高层建筑火灾中造成死亡和受伤的人员,有80%~85%是因火灾现场的浓烟和毒气所致。因此,世界各国政 府均在建筑、运输等领域对材料提出了严格的(阻燃、低火焰、低发烟、低毒等)要求。目前,酚醛泡沫塑料作为封闭与控制火势的材料,已被发达国家广泛使用。 法国马赛、里昂等城市建造的许多大型公寓,已将酚醛泡沫板安装在外墙上,再涂覆保护层,以有效阻止大火的蔓延和燃烧。日本政府已出台法规将酚醛泡沫作为公 共建筑的标准耐燃物。20世纪90年代以来,我国香港地区已从英国进口大量PF泡沫用于100多幢大楼中央空调系统风管的隔热保温。上海浦东东锦江大厦于 1996年在香港房产商的推荐下,首次采用了PF泡沫做外墙外保温材料。

我国从20世纪90年代后期到现在,泡沫类保温材料和轻质墙 体材料仍以聚苯乙烯(PS)和聚氨酯(PU)为主。特别是PS泡沫制成的夹芯板,近年来已形成年生产3200万平方米的能力,生产厂家发展到300多家, 仅1999年就销售出1600万平方米,广泛应用在建造大楼、厂房、仓库、体育馆、活动房屋之中。不难推测,这类易燃建筑材料生产得越多,所面临的风险和 危害也越大。因此,对我国重大火灾事故及火势难以控制的原因进行分析,易燃的外墙保温材料难逃罪责。所以,用PF泡沫取代PS、PU泡沫应该是利国利民的 好事,也是解决建筑外墙保温、防火问题的重大举措。随着我国经济建设步伐的加快,建筑保温材料正在日益突飞猛进的发展,市场急需大量阻燃、轻质、安全、高 效、成本低廉的隔热保温材料,酚醛泡沫以其独有的特点,应该在保温市场具有很好的发展前景。

2007年10月1日,由原国家建设部编 制的《建筑节能工程施工质量验收规范》颁布实施,第一次把节能工程明确规定为建筑工程的一项分部工程。总书记在十七大报告中指出:"必须把建设资源 节约型、环境友好型社会放在工业化、现代化发展战略的突出位置。"而推广节能建筑,就是被世界各国所重视的节约能源措施之一。而一座节能的建筑首先它的前 提是安全,离开安全,建筑也就失去了存在的意义。只有杜绝了易燃、危险的保温材料在建筑外墙上使用,才能从源头上遏制重大火灾事故的发生,酚醛泡沫作为外 墙保温材料,不失为减免火灾和降低火灾危害的最有效办法。

松香改性酚醛树脂怎么检测

高分子材料的定义高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 高分子材料的分类 高分子材料按来源分类

高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。 高分子材料按特性分类

高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。

①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。

②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。

③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。

④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。

⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。

⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。 高分子材料按用途分类

高分子材料按用途又分为普通高分子材料和功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。 高分子材料的性能高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。 高分子材料的合成与加工高分子材料在加工之前,要先进行合成,把单体合成为聚合物进行造粒,然后才进行熔融加工。高分子材料的合成方法有本体聚合、悬浮聚合、乳液聚合和溶液聚合。这其中引发剂起了很重要的作用,偶氮引发剂和过氧类引发剂都是常用的引发剂,高分子材料助剂往往对高分子材料性能的改进和成本的降低也有很明显的作用。加工工艺 高分子材料的加工成型不是单纯的物理过程,而是决定高分子材料最终结构和性能的重要环节。除胶粘剂、涂料一般无需加工成形而可直接使用外、橡胶、纤维、塑料等通常须用相应的成形方法加工成制品。一般塑料制品常用的成形方法有挤出、注射、压延、吹塑、模压或传递模塑等。橡胶制品有塑炼、混炼、压延或挤出等成形工序。纤维有纺丝溶体制备、纤维成形和卷绕、后处理、初生纤维的拉伸和热定型等。在成型过程中,聚合物有可能受温度、压强、应力及作用时间等变化的影响,导致高分子降解、交联以及其他化学反应,使聚合物的聚集态结构和化学结构发生变化。因此加工过程不仅决定高分子材料制品的外观形状和质量,而且对材料超分子结构和织态结构甚至链结构有重要影响。

业务培养目标:本专业培养具备高分子材料与工程等方面的知识,能在高分子材料的合成改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。

业务培养要求:本专业学生主要学习高聚物化学与物理的基本理论和高分子材料的组成、结构与性能知识及高分子成型加工技术知识。�

毕业生应获得以下几方面的知识和能力:�

1.掌握高分子材料的合成、改性的方法;�

2.掌握高分子材料的组成、结构和性能关系;�

3.掌握聚合物加工流变学、成型加工工艺和成型模具设计的基本理论和基本技能;�

4.具有对高分子材料进行改性及加工工艺研究、设计和分析测试,并开发新型高分子材料及产品的初步能力;�

5.具有应用计算机的能力;�

6.具有对高分子材料改性及加工过程进行技术经济分析和管理的初步能力。�

主干学科:材料科学与工程�

主要课程:有机化学、物理化学、高分子化学、高分子物理、聚合物流变学、聚合物成型工艺、聚合物加工原理、高分子材料研究方法�

主要实践性教学环节:包括金工实习、生产实习、专业实验、计算机应用与上机实践、课程设计、毕业设计(论文)。�

主要专业实验:高分子合成、高分子材料成型等�

修业年限:四年�

授予学位:工学学士�

开设院校:清华大学 深圳大学 北京化工大学 天津大学 吉林大学 复旦大学 华东理工大学 东华大学 浙江大学 合肥工业大学 武汉理工大学 华南理工大学 四川大学 南昌航空大学 北京工商大学 北京服装学院 天津科技大学 中北大学 太原理工大学 河北工业大学 河北科技大学 沈阳化工学院 大连轻工业学院 吉林化工学院 齐齐哈尔大学 哈尔滨理工大学 上海工程技术大学 上海大学 南京化工大学 扬州大学 浙江工业大学 青岛化工学院 济南大学 中国海洋大学 山东大学 青岛大学 聊城大学 郑州大学 郑州工业大学 郑州轻工业学院 河南科技大学 武汉化工学院 湖北工学院 湖北大学 长江大学 广东工业大学 桂林工学院 华南热带农业大学 哈尔滨工业大学 大庆石油学院 长春科技大学 中国科学技术大学(五年) 北京石油化工学院 江苏石油化工学院 北京理工大学 华北工学院 南京理工大学 北京航空航天大学 西北工业大学 江南大学 东北林业大学 安徽大学 安徽建筑工业学院 南昌大学 烟台大学 武汉科技学院 中南林学院 新疆大学 沈阳工业大学 沈阳工业学院 华东船舶工业学院 华东交通大学 中山大学 陕西科技大学 兰州理工大学(原名甘肃工业大学)等

学校按地区分布

【北京市】清华大学、北京理工大学、北京航空航天大学、北京化工大学、北京服装学院、北京石油化工学院、北京工商大学

【天津市】天津大学、天津科技大学

【河北省】河北工业大学、河北理工大学、河北科技大学、河北大学、燕山大学

【山西省】太原理工大学、中北大学

【辽宁省】大连轻工业学院、沈阳化工学院、大连理工大学、大连轻工业学院、沈阳工业大学、沈阳理工大学

【吉林省】吉林大学、长春工业大学、吉林建筑工程学院 、吉林化工学院

【黑龙江省】哈尔滨工业大学、黑龙江大学、哈尔滨理工大学、齐齐哈尔大学、东北林业大学 大庆石油学院

【上海市】复旦大学、华东理工大学、东华大学、上海大学

【江苏省】江苏大学、南京理工大学、江南大学、扬州大学、南京工业大学、江苏工业学院、南京林业大学、华东船舶工业学院

【浙江省】浙江大学、浙江工业大学

【安徽省】中国科学技术大学、合肥工业大学、安徽大学、安徽建筑工业学院、安徽工业大学、安徽理工大学

【福建省】福建师范大学

【江西省】南昌航空大学、南昌大学、华东交通大学

【山东省】山东大学、 中国海洋大学、青岛大学、青岛科技大学、济南大学、烟台大学 聊城大学

【河南省】郑州大学、郑州轻工业学院

【湖北省】湖北大学、武汉理工大学、湖北工学院、武汉化工学院、武汉科技学院、湖北科技大学 武汉工程大学 长江大学

【湖南省】中南林业科技大学 、南华大学、湖南工业大学、衡阳师范学院

【广东省】深圳大学 华南理工大学、广东工业大学、茂名学院、中山大学

【广西壮族自治区】桂林工学院

【海南省】海南大学

【四川省】四川大学、西南石油学院

【陕西省】西北工业大学、西安工程大学、陕西理工学院、陕西科技大学

【甘肃省】兰州理工大学

【新疆维吾尔自治区】新疆大学

本专业培养较系统地掌握材料科学的基本理论与技术,具备材料物理相关的基本知识和基本技能,能在材料科学与工程及其相关的领域的机械、电子冶金、能源、电力、通讯、石油化工等行业部门从事新材料和功能材料的研究、设计、开发与制造、材料的性能测试及生产管理等工作,也可在高等院校和研究所从事教学与科研工作。 一、专业基本情况 1、培养目标 本专业培养较系统地掌握材料科学的基本理论与技术,具备材料物理相关的基本知识和基本技能,能在材料科学与工程及与其相关的领域从事研究、教学、科技开发及相关管理工作的材料物理高级专门人才。

2、培养要求 本专业学生主要学习材料科学方面的基本理论、基本知识和基本技能,受到科学思维与科学实验方面的基本训练,具有运用物理学和材料物理的基础理论、基本知识和实验技能进行材料研究和技术开发的基本能力。毕业生应获得以下几方面的知识和能力: ◆ 掌握数学、物理、化学等方面的基本理论和基本知识; ◆ 掌握材料制备(或合成)、材料加工、材料结构与性能测定及材料应用等方面的基础知识、基本原理和基本实验技能; ◆ 了解相近专业的一般原理和知识; ◆ 熟悉国家关于材料科学与工程研究、科技开发及相关产业的政策,国内外知识产权等方面的法律法规; ◆ 了解材料物理的理论前沿、应用前景和最新发展动态,以及材料科学与工程产业的发展状况; ◆ 掌握中外文资料查询、文献检索以及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。

3、主干学科 材料科学、物理学。

4、主要课程 基础物理、近代物理、固体物理、材料物理学等。

5、实践教学 包括生产实习、毕业论文等,一般安排10—20周。

6、修业时间 4年。

7、学位情况 理学或工学学士。

8、相关专业 材料化学、物理学。 9、原专业名 材料物理、矿物岩石材料。 二、专业综合介绍 材料物理(Material Physics)专业,一般属于材料科学与工程系学院下辖的专业之一。所涉及到的方面主要是材料的宏观及微观结构,尤其是微观结构,材料的物理性能基本参数以及这些参数的物理本质。 材料物理专业是材料科学与工程里面不可或缺的重要组成部分。犹如支撑万丈高楼的基石,材料支撑着人类文明。很多人觉得新世纪是“信息技术”的世界,不过任何技术赖以实现的物质基础还是材料,这一重要地位在人类社会发展到任何阶段都无法改变,而且必将越来越重要。随着科学技术的发展,材料正朝着微型化、功能化、智能化的方向发展。现在颇为流行的纳米材料、环境材料、电子材料、信息材料,大部分都是材料的物理性能在各特殊领域的应用。比如纳米材料,可以说就是纳米尺度下的材料物理学。材料物理专业所研究的磁学及光学性质在信息材料领域有着巨大的应用空间,是现代半导体、微电子、光电子产业发展的理论及应用基础。因此,随着材料产业以及信息产业在新世纪的飞速发展,材料物理专业也必将迎来自己的辉煌。 本专业由名称就可以清楚地看出内容以材料学、物理学两方面为重点。物理学中的力、热、光、声均在此专业有广泛应用,当然侧重点还与将来个人的研究方向有关。比如说:对于研究信息材料磁存储技术的,铁磁学是中心课程,但是力学、电学、热学多少也要有所涉及。原子物理、固体物理、晶体学、X光技术、电子显微分析等课程也是比较重要的课程。所以这门专业主要偏重高中课程对应的物理,比较适合那些对微观结构和理论物理感兴趣的同学。在测量微观结构的时候,X光技术、电子显微技术(高倍电子显微镜)可能会涉及到一些辐射问题,当然,并不是很普遍而且剂量非常低。随着技术的进步,辐射问题应该降低直至完全消除。 总体来说,材料物理专业并不是一个很热门的专业,不过其中的一些方向,如纳米材料、高倍电子显微技术、电子材料还是相当热。国内院校中清华大学、山东大学、哈尔滨工业大学在这些方面较为出色。 对于材料物理专业的毕业生来说,面临的几种选择中,出国相对来说比较容易,难度比那些热门专业小得多。考研的话,除了上述较好的学校之外,还有中国科学院的一些相关研究所可以考虑。就业方面,几个热门方向还是比较好的,但还是以研究工作居多。作为其他产业的基础,本专业是不可缺少的,但是想一下子就赚大钱暴富成比尔·盖茨,恐怕也不可能。随着技术的成熟和产业化,本专业的就业形势必将大幅度改善。因此,选择本专业其实是在选择自己的未来。 材料物理专业代码:071301。 三、专业教育发展状况 材料物理专业是国家重点学科,是理工科结合的专业。培养掌握材料科学基础理论和现代材料科学研究方法,掌握材料性能与各层次微观结构之间关系的基本规律,能从事各种材料的设计、研究、生产、使用,材料性能改进,开发新材料、新技术的研究人才。 材料物理的前身是金属物理,国家很重视材料学科,建国后建立了材料物理专业。在五十年代轰轰烈烈的工业发展时期,很多院校都建立了材料学科,有些地区还专门成立了冶金学院、机械工程学院等。 目前,材料物理学科在各理工类院校都有相关的系,比较著名的学校有清华大学、北京航空航天大学、哈尔滨工业大学、西安交通大学、北京理工大学等学校。材料涉及的领域极为广泛,其品种繁多,形式各异。根据材料组成和结构的特点,可分为金属材料、无机非金属材料、有机高分子材料和复合材料。材料又是基础科学和工程科学融合的产物,随着科学技术的发展,原来各类相对独立的材料,已经相互渗透,相互结合,多学科的交叉是材料科学技术的重要特征。如建筑材料中混凝土外加剂的应用,聚合物混凝土、薄膜材料在玻璃深加工上的应用,有机高分子材料用于水泥砂浆的改性和对陶瓷工艺的改进等等。 浙江大学材料科学与工程学系创建于1978年,是我国高校中成立最早,学科门类、培养层次最齐全的材料系之一。目前设有金属材料及热处理、无机非金属材料、材料工程及自动化、材料科学等4个本科专业方向,金属材料及热处理、无机非金属材料、半导体材料等3个博士点(其中半导体材料是国家重点学科)和5个硕士点,以及材料科学与工程博士后流动站。很多学校的材料物理专业经历了一系列的变迁。清华大学材料科学与工程系成立于1988年,由原金属工程物理系的材料科学专业、机械工程系的金属材料专业及化学工程系的无机非金属材料专业组建而成。本科设材料科学与工程一个专业,含材料物理、金属物理、无机非金属材料、复合材料和电子材料等五个学科培养方向。 但是,由于各个学校的基础不同,因此建立的材料物理专业或者材料科学与工程专业偏重点也不同。例如天津城市建设学院,长期以来,材料科学与工程系设置的是无机非金属材料和高分子材料与工程两个专业,根据学院特点,按照国家教委引导性专业目录,自1997年起更名为材料科学与工程专业。因为这个学院是隶属建委系统的,所以主要培养为城乡建设服务的人才,材料的专业教育就以建筑材料为主,没有简单地套搬清华大学、天津大学、武汉工业大学(2000年已合并成为武汉理工大学),或化工类、冶金类院校材料专业的做法,而办出自己材料专业的特色。 这就说明了同样是材料物理专业,由于学校之间基础的差异及其背景的不同,研究的方向和侧重点也有所不同,这是要加以注意的。 1991年,国家教委批准在清华大学建设“先进材料研究开放实验室”,作为推动材料物理研究的一笔投入,带动材料物理研究。目前,材料科学与工程系已纳入很多高校“211工程”的重点学科群规划。以培养全面掌握材料科学和工程综合能力的复合型人才。 近年来材料物理专业研究的范围进一步拓宽,不断地开发出具有优异物理性能的先进材料,其中复合材料是一个主要方向。这些都反映了培养仅掌握单一材料、窄口径专业的人才是不能适应当前特别是未来形势发展的要求,因此拓宽专业口径是培养材料类专业人才的必然趋势。 四、专业就业数据分析 五、专业就业状况及趋势 材料物理专业的毕业生一般具有很强的物理、化学、数学理论水平,以及较高的独立实验能力和操作复杂仪器设备的能力,素质比较全面,所以,能够在机械、冶金、电子、化工军工、航空航天、仪表等部门从事材料的生产、研究和开发,或在科研单位和高等院校从事科研和教学工作,以及进一步培养成为高级材料科学研究人才。 从事材料专业的工程技术人员按工作性质可分为材料的研究、开发、生产和应用。这随着材料事业的发展有所不同。在七八十年代,有些学校,例如天津城市建设学院,主要培养从事硅酸盐材料生产的工程技术人员,充实到了有关工厂,对加强生产单位的技术力量,提高技术人员素质起到一定的作用。但是,随着天津市和与外省市交换培养的学生所在地材料生产厂技术力量趋于饱和,这方面人才需求量有了变化,现在在建筑行业从事材料应用、检测及材料管理工作的只占一半左右。 现代工业对材料的要求越来越高,相应地产生了更多的需求,例如钢铁大型企业、飞机制造业、汽车制造业等等,都需要精密的材料技术。本专业毕业生一般都能有1∶1.2以上的比例,根据各院校的情况具体而定。材料物理专业涉及的内容比较广泛,所以适应性比较强,有就业“万金油”的美誉。 材料物理专业乃至整个材料科学专业,毕业生可能面临的问题是,由于很多高校建立材料专业的背景不同,兼之材料科学作为专业名称提出来,又不是很长时间的事情,造成很多就业单位不了解这个专业的人才究竟是做什么的。所以毕业生在应聘的过程中应该首先澄清自己更细致的研究方向,比如,研究电子材料的材料物理专业学生,则可以考虑到与之相关的电子元器件行业,研究高分子材料的学生,则可以考虑到与有机分子化工有关的领域求职。 目前,随着国外企业在中国投资的日益提高,各个三资企业对材料物理专业的需求也开始增多。例如,杜邦、Motorola、宝洁等公司,每年都需要材料物理相关方向的人才到其研究发展中心进行新产品新工艺的开发。 随着材料物理领域的研究成果逐渐得到应用,材料产业的逐渐形成,材料物理专业的毕业学生的就业范围正在逐渐拓宽。21世纪,随着环境污染的加剧,能源的枯竭,世界各国都正在致力于新材料,新能源的开发与利用。各种环境替代性材料正在被研制出来。新的替代材料,以其低廉的成本,良好的性能,正逐渐应用于各个行业,获得了非常客观的效益。 虽然材料行业在当前形势下还处于低谷,但是结合以往的就业趋势,该专业就业前景美好,具有很大的发展潜力。选择材料物理专业的学生,一定不要被暂时的局面所震慑。就像很多专家预测的那样,材料产业将成为本世纪我国的支柱产业之一。这个行业前途无限。 六、专业院校分布(部分)黑龙江大学 西南科技大学 西北大学 山西大学 上海大学 青岛科技大学 湘潭大学 中国科学技术大学 北京科技大学 北京师范大学 东北大学 吉林大学 复旦大学 南京大学 武汉大学 武汉理工大学 中南大学 中山大学 四川大学 兰州大学 哈尔滨理工大学 云南大学 华东理工大学 合肥工业大学 太原理工大学 燕山大学 内蒙古工业大学 大连理工大学 哈尔滨工业大学 武汉科技大学 重庆大学 西安建筑科技大学

总的来说高分子材料与工程专业是一个很不错的专业,是现在就业前景最好的专业之一

松香改性酚醛树脂检测标准与方法

一.取样方法:

检测标准:GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样;

二.颜色测定方法:

检测标准:清漆、清油及稀释剂颜色测定法GB/T 1722-1992

三.粘度检测方法:

检测标准:胶黏剂黏度的测定 单圆筒旋转黏度计法GB/T 2794-2013;

四.细度检测方法:

检测标准:色清、清漆和印刷油墨研磨细度测定法GB/T1724-1979(1989)、GB/T6753.1-2007;

五.不挥物含量(固含量)检测方法:

(一)检测标准:色漆、清漆和塑料 不挥发物含量的测定GB/T1725-2007;

(二)注意事项:称量约1g,加热温度和时间(105±2℃,2h)。

六.醇酸树脂酸值检测方法:

(一)检测标准:塑料用聚酯树脂、色漆和清漆用漆基 部分酸值和总酸值的测定GBT 6743-2008;

(二)注意事项:按GBT 6743-2008 中方法A的规定进行测试,计算按8.1.2的规定进行。溶解样品用溶剂甲苯:乙醇=1:1或双方商定的其它溶剂。

(三)酸值的检测步骤:

1.仪器

碱式滴定管,250ml锥形瓶,天平。

2.试剂

0.15N氢氧化钾标准溶液,1%酚酞溶液,乙醇和甲苯的混合液(乙醇:甲苯=1:2)。

3.测定方法

称取0.3-0.5g的样品,置于250ml锥形瓶中,加入30-40g混合液,稍微加溶解样品,冷却至常温。以酚酞为指示剂(即加入5-8滴酚酞溶液),用0.15N的KOH标准溶液滴定至淡红色为终点,记下消耗KOH溶剂的体积。

4.计算

酸值=V*C*56.1/M

式中:V----试样消耗KOH溶液的体积,ml

C----KOH溶液的溶度,N

M----试样的质量,g

七.软化点检测方法(环球法):

松香树脂软化点测定(环球法)标准操作规程

(一)、仪器

(1) SYD-2806F型全自动软化点测定仪一套。

(2) 烧杯:容量约为800ml,直径90mm,高度不低于140mm。

(二)、实验步骤

称取直径约 5mm的松香试样约5g于具柄瓷皿中,慢慢加热在尽可能低得温度下熔融,避免产生气泡和发烟。将熔融的松香立即注入平放的铜板上预热的圆环中,待松香完全凝固,轻轻移去铜板,环内应充满松香,表面稍有凸起,用电熨斗和电热板烫平后,备做检验。如环内松香有凹下或气泡等情况,须重新制作。

将准备好的试样圆环放在环架板上,把钢球定位器装在圆环上,再把钢球放入钢球定位器中心,然后将整个环架放入800ml烧杯内。

以上装置完毕后,倾入新煮沸过而冷却至35℃以下的水于烧杯内(如果试样的软化点高于80℃时,传热介质应改用甘油),使环架板的上面至水面保持51mm。放置10min后,开启SYD-2806F型全自动软化点测定仪的电源开关,按“启动试验”键后,使水温升高5±0.5℃/min,并不断的充分搅拌,使温度均匀的上升,当包裹钢球的松香落至金属平板上,该通道温度被仪器自动检测到且温度及时间值被锁定不再变化,此温度即为松香的软化点。

(三)、结果报告

一次熔样的两次平行试验允许相差0.4℃,以算术平均值为结果,并报告至小数点后第一位。

八.松香改性酚醛树脂正庚烷值检测方法:

(一)仪器及试剂

1.仪器

酸式滴定管,50ml烧杯,天平, 水银温度计。

2.试剂

正庚烷(分析纯)

(二)检测正庚烷值

1.溶解树脂

称10g树脂和20g亚麻油,放入50ml烧杯中,用5-10分钟缓慢加热到240℃,溶解树脂, 树脂融化完,降温,待用。

2.测定方法

准确称取2g树脂油样品,置于50ml烧杯中,在25℃恒温下,用正庚烷滴定到树脂油样品浑浊为终点,记下消耗正庚烷的体积。

3.计算

正庚烷值=V2-V1

V2----终点体积,ml.

V1----初始体积,ml.

检测参考标准和检测检验说明:

一、松香改性树脂溶解方法:

称10g树脂和20g亚麻油,放入50ml烧杯中,用10分钟缓慢加热到240℃,溶解树脂,树脂溶化完全,降温,待用。

以上就是关于我国拿下哪一项“制芯”关键技术?全部的内容,如果了解更多相关内容,可以关注,你们的支持是我们更新的动力!

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【我国拿下哪一项“制芯”关键技术?】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/1472209.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0428秒, 内存占用2.07 MB, 访问数据库22次

陕ICP备14005772号-15