两个矩阵的特征值相等的时候不一定相似,但当这两个矩阵是实对称矩阵时,有相同的特征值必相似。比如当矩阵A与B的特征值相同,A可对角化,但B不可以对角化时,A和B就不相似。当这两个矩阵都是实对称矩阵时,都一定可以对角化,于是有相同的特征值就一定相似。
在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B。
判断两个矩阵是否相似的辅助方法:

(1)判断特征值是否相等;
(2)判断行列式是否相等;
(3)判断迹是否相等;
(4)判断秩是否相等。
以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。
两个矩阵若相似于同一对角矩阵,这两个矩阵相似。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【特征值相同的矩阵相似吗】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
