行列式列与列能加减吗

 2025-03-25 19:57:01  阅读 770  评论 0

摘要:行列式列与列能加减。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式相加减的规则1、前一个行列式第一行第

行列式列与列能加减。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式相加减的规则

1、前一个行列式第一行第二列元素,要减去后一个行列式中第一行第二列的元素。只有当两个行列式,只相差一行(或一列)元素不同时,才可以直接相加(相同的行(列)不变,不相同的行(列),元素分别相加)。

2、行列式与它的转置行列式相等。交换行列式的两行,行列式取相反数。行列式的某一行的所有元素都乘以同一数k,等于用数k乘此行列式。行列式如果有两行元素成比例,则此行列式等于零。

行列式列与列能加减吗

3、行列式的一个重要性质,设D1=|aij|,D2=|bij|是数域P上的两个n阶行列式,则D1与D2的乘积D1D2=|cij|,其中cij=ai1b1j+ai2b2j+……+ainbnj(i,j=1,2,-,n),即乘积D1D2中的第i行、第j列的元素cij为D1的第i行元素与D2的第j列对应元素乘积的和。此相乘规则简称行乘列。

行列式的性质

(1)性质1:行列式与他的转置行列式相等;

(2)性质2:互换行列式的两行(列),行列式变号;

(3)性质3:行列式中某行的公共因子k,可以将k提到行列式外面来。

拓展资料

1,行列式在数学中,是由解线性方程组产生的一种算式。

2,行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数;其定义域为nxn的矩阵A,取值为一个标量,写作det(A)或|A| 。

3,行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【行列式列与列能加减吗】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/1756094.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0338秒, 内存占用1.98 MB, 访问数据库22次

陕ICP备14005772号-15