曾经那么执着,
为了梦想,
一路走来,
是越来越好,还是越来越坏?
而今现在,
我早已将题备下,
你若不来,
所有的精彩终究只能用寂寞去掩盖。
本题考查圆锥曲线的应用,涉及椭圆的方程、几何性质、直线与椭圆的位置关系等知识点,综合考查数形结合的思想、转化与划归的思想,属于中档题。
探索四边形是否为菱形,可分两步进行:
1. 判定四边形为平行四边形;
2. 判定平行四边形为菱形。
法1,一组邻边相等的平行四边形是菱形,利用弦长公式与距离公式求得两邻边长,通过邻边相等建立方程,由于方程无解,故菱形不存在。
法2,对角线互相垂直的平行四边形是菱形,借助向量的数量积来建立方程,同样该方程无解,因此菱形不存在。
你有没有发现,法2的方程已经包含在法1的方程之中。换言之,法2已然排除了法1中的部分增根,因而法2在运算上远胜于法1。
让我们再来重温一下与四边形有关的问题:
夜,那么长,以数学疗人寂寞,不是修行,就是罪过。
叨叨
2019.11.3
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【如何证明四边形是菱形(第一百五十三夜)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
