会计信息失真论文(AI已经参与论文打假了)

 2025-08-09 01:36:02  阅读 771  评论 0

摘要:博雯 发自 凹非寺转载自:量子位(QbitAI)现在的AI已经开始参与论文打假了!就像是这样,经过旋转、拉伸和缩放之后的图片,人眼或许无法辨认,但AI能看到数百个相似的特征:△蓝色线条表示相似特征即使通过高超的“图像处理手段”把一张完整图像中的局部画面挪到自己的图像里

博雯 发自 凹非寺转载自:量子位(QbitAI)

现在的AI已经开始参与论文打假了!

就像是这样,经过旋转、拉伸和缩放之后的图片,人眼或许无法辨认,但AI能看到数百个相似的特征:

△蓝色线条表示相似特征

即使通过高超的“图像处理手段”把一张完整图像中的局部画面挪到自己的图像里,也能一眼分辨:

对于AI来说,这可能是秒认的活儿,甚至就算是一篇图像繁杂的完整论文,也不过花费一两分钟。

但对于人眼可就没那么简单了,比如知名学术打假人Elisabeth Bik为了寻找不同论文中使用相同图片展示各自不同的实验结果的例子,曾花费了整整2年时间。

而对于出版商们来说,刊登又撤稿中间的损失就更大了……

因此,最近几年,AI打假员愈发频繁地被引入了论文审查,尤其是图像问题中。

比如,自今年1月份开始,世界上最大、最古老的癌症研究专业协会,美国癌症协会(AACR)就已经开始使用AI软件来评审旗下期刊文章里的图片造假或重复问题了。

官方网站上也已经写明:提交手稿中的所有图像都需要通过AI软件进行筛选。

不仅是AACR,世界第五大出版商SAGE、老牌经典医学期刊JCI、 JCI Insight都已经用上了这种方法。

自动图像校对

这些期刊和出版商们所使用的是一个由以色列公司Proofig开发的同名软件。

Proofig软件基于AI技术和图像处理技术,面向各种科学文稿中的图像,包括所有类型的显微镜照片(光学、电学、共聚焦)、载玻片、蛋白免疫印迹(Western blot)、生物体内和体外图像、植物图像等等。

软件会从论文中识别图像,然后提取它们共同的特征进行比较。

这些“共同的特征”包括对图像整体的缩放或旋转、部分重复或重叠、还有一些方位上的不同。

除此之外,软件也能额外检测到一些问题,比如高分辨率的原始数据被压缩到更小的文件中时,可能出现的压缩失真或压缩伪影(Compression artifact)情况。

一篇普通的论文通常在2分钟以内可以检查完毕,最多不超过10分钟。

对于很多出版商来说,一篇已刊登的科学文稿里如果出现图像剽窃这种学术不端的现象,那么从调查、撤稿到后续的法律费用,平均每篇文章可能要损失百万美元。

因此,很多出版商都乐意引入性价比较高的AI来和人工审查组一起工作。

AACR的一位期刊运营总监就表示:

很多作者也很高兴能在出版前注意到一些“无意中的”图像复制错误。

而对于我们来说,严谨的数据是我们期刊的一个显著的标志,因此,这(Proofig)绝对是值得投入的时间和金钱。

出版商们联合起来

其实,科学文稿中的图像重复或剽窃的现象已经是屡见不鲜了。

2016年,Nature上就有一篇文章对约2万篇生物医学论文进行人工分析后发现,其中4%的论文都可能包含上述问题。

而通常每年只有1%的文稿得到更正,因此撤回的文章就更少了。

因此,去年5月份,一些出版商联合起来成立了一个为解决论文中图像问题的小组,其中包括荷兰出版业巨头爱思唯尔(Elsevier)、Wiley、Springer Nature和Taylor & Francis。

爱思唯尔表示,小组最终的目标是“创造一个能够帮助我们自动识别图像变化的环境。”

还有很多出版商试图自己解决问题,比如瑞士出版商Frontiers开发了自己的论文图像检查软件,作为自动检查系统AIRA的一部分。

Frontiers内部的一位发言人表示,软件自2020年8月投入使用,标记的大多数论文都没有问题, 只有大约10%的论文需要人工检查小组的跟踪处理。

而有些尚未引入AI手段的出版商也展现出了对这种方法的怀疑:

在可靠性上,AI检查还没有大规模地投入使用。比如爱思唯尔的软件目前的进度还是“正在测试中“,只对部分期刊开放使用。

在成本上,AI软件偶尔的“误杀”依旧需要人工参与,甚至会引起其他的纠纷。

不过有人从另一个角度提出了问题:

如果所有的论文都是开放存取的,那么图像误用/重复问题将更容易得到审查,训练AI也会更有效率。

参考链接:

[1]https://www.nature.com/articles/d41586-021-03807-6

[2]https://www.nature.com/articles/nature.2016.19802

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【会计信息失真论文(AI已经参与论文打假了)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/2031559.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0465秒, 内存占用1.93 MB, 访问数据库23次

陕ICP备14005772号-15

  • 我要关灯
    我要开灯
  • 客户电话

    工作时间:8:00-18:00

    客服电话

    电子邮件

    beimuxi@protonmail.com

  • 官方微信

    扫码二维码

    获取最新动态

  • 返回顶部