线性代数里面相似矩阵的定义是说,一个矩阵A,另一个矩阵B,如果A和B是相似矩阵,则必存在一个可逆矩阵M,是的A和B满足下列关系
那么这么一个定义显然不容易看不出A和B的特殊关系,既然是相似矩阵,A和 B 之间总得有点不一样的关系吧?
这个不一样的关系就是A和B拥有同样的特征值,设为L(实际教科书里是兰姆达,但是不好输入,这里用L代替。)
证明的方法很巧妙:
特征值和特征向量和矩阵的关系是这样:
如果B是A的相似矩阵,L也是B的特征值。
第一步: A*M*M'*x=L*x 左侧加入M*M'=I 等于什么也没加入。
第二部:等式两边左乘M' M'*A*M*M'*x=L*M'*x
第三部: 带入B, B*M'*x=L*M'x M'*x是一个向量,根据特征值和特征向量的关系,则L是B的一个特征值,而M'*x是B的一个特征向量。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【如何证明两个矩阵相似(相似矩阵之间究竟什么关系)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
