在勾股定理近500种证明方法中,欧几里得(公元前300年左右)的证明方法是非常独特的,也是现存最早有文字资料记载下来的。在《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形的面积之和”。
图1
其证明思路是沿直角三角形斜边上的高所在直线,将斜边上的正方形(黄色)分割成两个矩形(绿色和红色),然后证明相应颜色的正方形与矩形的面积相等即可。
图1
为此,将正方形和矩形沿对角线等分,证明相应正方形和矩形的一半相等即可。
图3
为此,证明两组全等三角形。(如下图中,△ABA2≌△AA1C,△BB1C≌△ABB2,可由SAS判定。)
因为这两组全等三角形的面积,分别等于相应的正方形和矩形面积的一半。
图4
原因如下:
△ABA2与△AA2C,夹在平行线AA2//BC2之间,同底等高,面积相等;
△AA1C与△AA1D,夹在平行线AA1//DD1之间,同底等高,面积相等;
△ABB2与△BB2C, 夹在平行线BB2//AC1之间,同底等高,面积相等;
△BB1C与△BB1D, 夹在平行线BB1//DD1之间,同底等高,面积相等;
因此,其逻辑链条打通:
△ABA2≌△AA1C,△BB1C≌△ABB2=》全等三角形的面积相等
=》同底等高的三角形面积相等=》相应正方形和矩形面积相等
=》AC²+BC²=AB²。
回顾欧氏证法的主要思路:沿斜边上的高线分割斜边上的大正方形,得到两个矩形,
并且相应颜色相同的正方形和矩形面积相等(如图5)。
图5
颜色相同的正方形和矩形面积相等,翻译成数学语言就是:
AC²=ADxAA1=ADxAB,BC²=BDxBB1=BDxAB,
即AC²=ADxAB,BC²=BDxAB,
这恰好就是射影定理的结论:直角三角形的任意一条直角边是其在斜边上的射影与斜边的比例中项。
这也可以说是,欧几里得证明勾股定理的过程中“意外”收获!
所以从这个角度说,勾股定理的欧几里得证法与用射影定理证明勾股定理,本质上是相通的。
用射影定理证明勾股定理:
图6
由射影定理:AC²=ADxAB,BC²=BDxAB,
AC²+BC²=ADxAB+BDxAB=(AD+BD)AB=ABxAB=AB²,
其中,
AC²=ADxAB(如图6)=ADxAA1(如图5),
BC²=BDxAB(如图6)=BDxBB1(如图5),
用文字表达就是:沿斜边上的高线分割大正方形,得到两个矩形,
并且相应正方形和矩形面积相等(如图5)。
因而,“沿斜边上的高线分割大正方形,得到两个矩形,并且相应正方形和矩形面积相等”与“直角三角形的任意一条直角边是其在斜边上的射影与斜边的比例中项”实际是等价的!
欧氏证法,是从面积角度证明勾股定理;射影定理证法,是从相似角度证明勾股定理,本质上一样的,也算得上是殊途同归。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【证明勾股定理的16种方法(勾股定理两种证法相通之处)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
