平行四边形的证明(初二下学期)

 2025-08-23 16:12:01  阅读 302  评论 0

摘要:在解决平行四边形的问题时,有些题目直接证明可能比较困难,如果能借助平行四边形的基本性质(对边平行且相等、对角线互相平分、对角相等),添加适当的辅助线,巧妙地构造出新的平行四边形,那么就能达到化难为易的效果。证明两条线段相等例题1:如图,在△ABC中,D为AB的中

在解决平行四边形的问题时,有些题目直接证明可能比较困难,如果能借助平行四边形的基本性质(对边平行且相等、对角线互相平分、对角相等),添加适当的辅助线,巧妙地构造出新的平行四边形,那么就能达到化难为易的效果。

证明两条线段相等

例题1:如图,在△ABC中,D为AB的中点,E为AC上一点,BE∥DF,BD∥EF,DF交AC于G.求证:AG=EG.

分析:本题可以通过一组对边平行且相等构造平行四边形。通过“BE∥DF,BD∥EF”可以证明四边形BEFD为平行四边形,点D为AB的中点,那么AD=BD,因此连接DE、AF可证明四边形ADFE是平行四边形,根据平行四边形的对角线互相平分可得结论。当然,本题也可以证明△AGD≌△EGF。

证明:∵BE∥DF,BD∥EF,

∴四边形BEFD是平行四边形.

∴EF=BD.

∵D为AB的中点,

∴AD=BD,

∴EF=AD.

如图,连接DE,AF,

∵EF∥AD,

∴四边形ADEF是平行四边形.

∴AG=EG.

证明两线段互相平分

例题2:如图,在平行四边形ABCD中,E,G,F,H分别是四条边上的点,且AE=CF,BG=DH.求证:EF与GH互相平分.

分析:证明EF与GH互相平分,证明两个三角形全等不容易实现,可以连接HE、EG、FG、HF,证明四边形HEGF为平行四边形,平行四边形的对角线互相平分。而要证明平行四边形,可以通过证明△HAE≌△GCF、△HDF≌△GBE,得到HF=EG、HE=FG,两组对边相等的四边形为平行四边形。

证明:如图,连接HE,EG,GF,FH

∵四边形ABCD是平行四边形,

∴∠A=∠C,AD=CB.

∵BG=DH,

∴AH=CG.

又∵AE=CF,

∴△HAE≌△GCF,

∴HE=FG.

同理可证HF=EG.

∴四边形EGFH是平行四边形.

∴EF与GH互相平分.

证明 两条线段平行

例题3:如图,平行四边形ABCD的对角线AC和BD相交于点O,E,F分别为OB,OD的中点,过点O任作一直线分别交AB,CD于点G,H.求证:GF∥EH.

分析:要证明GF∥EH,可连接GE、FH,证明四边形GEHF为平行四边形,已经具备OE=OF,可再证明△AOG≌△COH得到OG=OH,对角线互相平分的四边形为平行四边形。根据平行四边形的性质即可得到对边平行。

证明:如图,连接GE,FH.

∵四边形ABCD为平行四边形,

∴OA=OC,OB=OD,AB∥CD,

∴∠BAO=∠DCO.

又∵∠AOG=∠COH,

∴△AOG≌△COH,

∴OG=OH.

∵E,F分别为OB,OD的中点,

∴OE=1/2OB=1/2OD=OF,

∴四边形EHFG是平行四边形.

∴GF∥EH.

证明线段和差关系

例题4:如图,在四边形BCED中,DE∥BC,延长边BD,CE交于点A,在边BD上截取BF=AD,过点F作FG∥BC交EC于点G.求证:DE+FG=BC.

分析:证明DE+FG=BC可以利用截长补短法,本题通过一组对边平行且相等构造平行四边形,然后再证明一次三角形全等即可。

证明:如图,过点F作FM∥AC交BC于点M,

则四边形FMCG是平行四边形,∠BFM=∠A.

∵DE∥BC,∴∠EDA=∠B.

又BF=AD,

∴△BFM≌△DAE,

∴BM=DE.

∵四边形FMCG是平行四边形,

∴FG=MC,

∴DE+FG=BM+MC=BC.

通过构造平行四边形可以证明线段相等、线段互相平分、线段平行、线段的和差关系等,学会构造平行四边形也是我们需要掌握的一种技能。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【平行四边形的证明(初二下学期)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/2100418.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0467秒, 内存占用1.93 MB, 访问数据库24次

陕ICP备14005772号-15