证明面面平行的方法(高考考纲与考向分析)

 2025-08-28 11:18:01  阅读 918  评论 0

摘要:考纲原文(1)以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.理解以下判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.理解以下

考纲原文

(1)以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.

理解以下判定定理:

·如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.

·如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.

理解以下性质定理,并能够证明:

·如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.

·如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.

·垂直于同一个平面的两条直线平行.

(2)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.

知识点详解

一、直线与平面平行的判定与性质

1.直线与平面平行的判定定理

2.直线与平面平行的性质定理

二、平面与平面平行的判定与性质

1.平面与平面平行的判定定理

2.平面与平面平行的性质定理

3.平行问题的转化关系

三、常用结论(熟记)

1.如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.

2.如果两个平行平面中有一个平面垂直于一条直线,那么另一个平面也垂直于这条直线.

3.夹在两个平行平面间的平行线段长度相等.

4.经过平面外一点有且只有一个平面与已知平面平行.

5.两条直线被三个平行平面所截,截得的对应线段成比例.

6.如果两个平面分别和第三个平面平行,那么这两个平面互相平行.

7.如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.

8.如果两个平面垂直于同一条直线,那么这两个平面平行.

考向分析

考向一 线面平行的判定与性质

线面平行问题的常见类型及解题策略:

(1)线面平行的基本问题

①判定定理与性质定理中易忽视的条件.

②结合题意构造图形作出判断.

③举反例否定结论或反证法证明.

(3)线面平行的探索性问题

①对命题条件的探索常采用以下三种方法:

a.先猜后证,即先观察与尝试,给出条件再证明;

b.先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性;

c.把几何问题转化为代数问题,探索命题成立的条件.

②对命题结论的探索常采用以下方法:

首先假设结论存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾的结果就否定假设.

考向二 面面平行的判定与性质

判定面面平行的常见策略:

(1)利用定义:即证两个平面没有公共点(不常用).

(2)利用面面平行的判定定理(主要方法).

(3)利用垂直于同一条直线的两平面平行(客观题可用).

(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【证明面面平行的方法(高考考纲与考向分析)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/2111855.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0342秒, 内存占用1.91 MB, 访问数据库24次

陕ICP备14005772号-15