证明二元函数可微例题(数学笔记)

 2025-09-06 19:00:01  阅读 361  评论 0

摘要:一、定义y=f(x),(x∈D), x0∈D, x0+x∈Dy=f(x0+x)-f(x0)若y=Ax+o(x),称y=f(x)在x=x0可微意思是y若能表示为一个常数乘以x和一个x的高阶无穷小的和,就称y=f(x)在x=x0可微称Ax为y=f(x)在x=x0这点的微分dy|x=x0=Ax=Adx, dx也是微分二、Notes1、可导 可微证明:“=>”:设lim(x-

一、定义

y=f(x),(x∈D), x0∈D, x0+Δx∈D

Δy=f(x0+Δx)-f(x0)

若Δy=AΔx+o(Δx),称y=f(x)在x=x0可微

意思是Δy若能表示为一个常数乘以Δx和一个Δx的高阶无穷小的和,就称y=f(x)在x=x0可微

称AΔx为y=f(x)在x=x0这点的微分

dy|x=x0=AΔx=Adx, dx也是微分

二、Notes

1、可导 <=> 可微

证明:

“=>”:设lim(Δx->0)f(x)=A

则Δy/Δx=A+α, α->0(Δx->0)

Δy=AΔx+Δxα,

lim(Δx->0)[Δxα/Δx]=0,

即Δxα=o(Δx)

所以Δy=AΔx+o(Δx)

所以y=f(x)在x=x0点可微

“<=”:设Δy=AΔx+o(Δx)

Δy/Δx=A+o(Δx)/Δx

因为lim(Δx->0)[o(Δx)/Δx]=0

所以Δy/Δx=A+α, α->0, (Δx->0)

所以y=f(x)在x=x0点可导


2、y=f(x),x=x0,Δy=AΔx+o(Δx),则A为f'(x0),A为该点导数

3、y=f(x),x=x0,Δy=AΔx+o(Δx),则(dy|x=x0)=AΔx=f'(x0)Δx=f'(x0)dx

若y=f(x)可导,dy=df(x)=f'(x)dx

如:

d(x^3)=(x^3)'dx=3x^2dx

d(e^3x)=3e^3xdx

x^2dx=d(1/3*x^3+C)

1/(1+x^2)*dx=d(arctanx+C)

4、若y=f(x)在x=x0可微,则:

Δy=f'(x0)Δx+o(Δx), dy|x=x0 = f'(x0)dx

=> Δy-dy=o(Δx)

5、设y=f(x)在x=x0可微,则

dy=f'(x)Δx

f'(x)为y=f(x)在x=x0对应点的斜率

三、微分的几大工具

1、公式

d(c)=0

d(x^n)=nx^(n-1)dx

d(a^x)=a^x*lna*dx

d(sinx)=cosxdx, d(cosx)=-sinxdx

d(loga(x))=1/(xlna)*dx

......

2、四则

d(u±v)=du±dv

d(uv)=dudv

d(u/v)=(vdu-udv)/v^2

3、复合

y=f(u)

(1)dy=f'(u)du

(2)若u=g(x), dy=f'(u)du=f'(u)g'(x)dx

四、近似计算

设y=f(x)在x=x0可微

Δy=f(x0+Δx)-f(x0)=f'(x0)Δx+o(Δx)

=>Δy≈f'(x0)Δx

=>f(x0+Δx)≈f(x0)+f'(x0)Δx

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【证明二元函数可微例题(数学笔记)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/2133894.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0345秒, 内存占用1.91 MB, 访问数据库24次

陕ICP备14005772号-15