2024考研数学复习线性代数解题技巧
第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。
第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。
第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理
第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。
第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2024年考研数学复习线性代数解题技巧】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
