证明函数在区间内可导(高中数学)

 2025-08-10 23:45:01  阅读 136  评论 0

摘要:一、定义设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量x,(x0+x)也在该邻域内时,相应地函数取得增量y=f(x0+x)-f(x0);如果y与x之比当x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记作f'(x0)或df(x0)/dx。利用定义法

一、定义

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记作f'(x0)或df(x0)/dx。

利用定义法求导步骤:

1.求增量Δy。

2.算比值Δy/Δx。

3.Δx→0,Δy/Δx→常数。

二、几何意义

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示曲线在点P(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

曲线y=f(x)在点P(x0,f(x0))处的切线斜率是f'(x0),切线方程为y-y0=f'(x0)(x-x0)。

三、常见函数的导数

四、导数的四则运算

两个函数的和(或差)的导数,等于这两个函数的导数的和(或差)。即:(u±v)'=u'±v'。

两个函数积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数。即:(uv)'=u'v+uv'。

两个函数商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方。即(u/v)'=(u'v-uv')/v^2。

五、复合函数求导方法

设u=g(x),则f(u)求导得:f'(x)=f'(u)·g'(x).

六、函数的单调性判别

函数在某区间内可导,若导数大于零,则单调递增;若导数小于零,则单调递减。

已知函数为递增函数,则导数大于等于零;已知函数为递减函数,则导数小于等于零。

可导函数的单调性,可按如下步骤确定:

1.确定函数的定义域;

2.求函数的导数,令导数值等于零,求出分界点;

3.根据分界点将定义域分成若干开区间;

4.判断函数的导数在各个开区间内的符号,即可判定函数的单调性。

七、函数的极值与最值

函数的极值的定义:若函数f(x)在x0的一个邻域D有定义,且对D中除x0的所有点,都有f(x)

同理,若对D的所有点,都有f(x)>f(x0),则称f(x0)是函数f(x)的一个极小值。

函数的最值:最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。

①函数的最值点必在函数的极值点或者区间的端点处取得。

②函数的极值可以有多个,但最值只有一个。

八、导数的综合运用

1.利用导数证明不等式

2.根与零点问题

3.导数应用题

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【证明函数在区间内可导(高中数学)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/2059243.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0327秒, 内存占用1.91 MB, 访问数据库24次

陕ICP备14005772号-15