琴生不等式是以丹麦数学家约翰·琴生(Johan Jensen)命名的一个重要不等式。琴生不等式也译为詹森不等式,它的本质是对凸函数性质的应用。琴生不等式在证明不等式中发挥着巨大的作用,应用琴生不等式往往比借助任何一般性的理论都要容易得多。
函数凸凹性在高中阶段是没有做具体要求的,实际上这是高等数学研究的函数重要性质之一,但它的身影在练习题目和高考试题中却经常出现。这也充分说明了高考命题源于课本,又高于课本的原则,同时也体现了高考为高校输送优秀人才的选拔性功能。当然函数凹凸性的应用非常广泛,今天我们就从函数凸凹性的另一个终极定理——琴生不等式在高考题中的应用进行简单的研究。
1·琴生不等式:
2·加权形式:
1·证明代数不等式:
2·证明三角不等式:
3·证明数列不等式:
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【凸函数性质证明(高中数学课程)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
