某日,燕尾模型讲毕,一六年级学霸级学生说,其可用燕尾模型证梅涅劳斯定理,大惊,问其如何得之,其说:一老师讲的。六年级学生学梅涅劳斯定理,ZB大于实用。既然学生感兴趣,咱就一装到底。
梅涅劳斯:古希腊数学家。
梅涅劳斯定理指的是:一条直线(红线)与一个三角形的三边或延长线相交,三角形的三个顶点按顺时针或逆时针方向,三条边顶点到交点的比值的积为1.其证明方法很多,相似三角形即可证明。
下面咱们用小学奥数的“燕尾模型”证明一下。
塞瓦:意大利数学家、水利工程师,该定理于1678年发表于《直线论》一书。
塞瓦定理:可以简单记为三线共点的充要条件是:顺时针或逆时针的分线段的比值积为1.
该定理可以用上面的梅涅劳斯定理证明。
斯坦纳:瑞士几何学家
斯坦纳定理:两内角平分线相等的三角形必为等腰三角形。
早在2000多年前,《几何原本》就有定理:等腰三角形的两底角平分线的长相等。可是它的逆定理书上却只字未提,估计作者也不会,呵呵。直到1840年,莱默斯请求斯图姆给予纯几何证明,可斯图姆也不会,最后斯坦纳给出了证明,因此该定理也称作:斯坦纳——莱默斯定理。现在很多高中生也能证明。大家可以试试有没有难度。
托勒密定理:圆内接凸四边形的对边积的和等于对角线的积。用相似可以证明
西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边所在直线垂线,则三垂足在一点直线上,这条直线我们称作西姆松线。
这些定理一般的中考都不考,一和四和中学的相似联系比较紧密,尽量掌握,培优课上可能会有,感兴趣的同学可以看看。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【托勒密定理的证明(初等几何五大ZB定理)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
