与反比例函数相关的几个模型,在解题时可以考虑调用.
反比例与面积问题
线段等量关系
平行关系
证明1
由反比例函数的几何性质有SΔOAD=SΔOCB
SΔOCD=SOBCD-SΔOBC=SOBCD-SOAD=S梯形ABCD
证明2
辅助线是关键
分别过B、C两点,作x、y轴垂线,连接BE和CF
因为BF平行于Y轴,所以SΔBEF=SΔBFO(同底等高)
同理CE平行于X轴,所以SΔEFC=SΔECO(同底等高)
故SΔEFB=SΔEFC 得到 EF平行于AD
四边形ABFE和CDFE都为平行四边形(两组对边平行)
所以AB=CD
一样的证明思路
过A、D分别作XY轴的垂线,连接AF、DE
SΔDFE=SΔDFO SΔAFE=SΔAEO (同底等高)
所以SΔEFA=SΔEFD 所以得到EF平行于AD
四边形EFBA和EFDC都是平行四边形
所以AB=CD
证明3
同理可得
同样运用同底等高可以证明,相信你也可以的!
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【证明梯形(反比例函数与几何的重要结论与证明)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态
