n阶实对称矩阵的性质:
实对称矩阵A的不同特征值对应的特征向量是正交的。
实对称矩阵A的特征值都是实数,特征向量都是实向量。
n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。
如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji),(i,j为元素的脚标),则称A为实对称矩阵。
实对称矩阵A一定可正交相似对角化。
一个特征值均为实数的矩阵一般不能对角化,不过上三角化还是可以的',特别地,存在正交矩阵Q,上三角矩阵R使得
AQ = QR(*)
R对角线上的元素是全体特征值,即Schur分解定理的特例(可以用数学归纳法对矩阵的阶数进行归纳)
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【n阶实对称矩阵的性质】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态