面试案例(75道经典AI面试题)

 2025-08-13 08:51:02  阅读 235  评论 0

摘要:基础知识(开胃菜)Python1、类继承有如下的一段代码:class A(object): def show(self): print 'base show'
class B(A): def show(self): print 'derived show'
obj = B()
obj.show()
如何调用类A的show方法了。 方法如下:obj.__class__ = Aobj.show()
class 方法指向了类对

基础知识(开胃菜)

Python

1、类继承

有如下的一段代码:

class A(object):
 def show(self):
 print 'base show'
class B(A):
 def show(self):
 print 'derived show'
obj = B()
obj.show()

如何调用类A的show方法了。 方法如下:

obj.__class__ = Aobj.show()

class 方法指向了类对象,只用给他赋值类型A,然后调用方法show,但是用完了记得修改回来。

2.方法对象

问题:为了让下面这段代码运行,需要增加哪些代码?

class A(object):
 def __init__(self,a,b):
 self.__a = a
 self.__b = b
 def myprint(self):
 print 'a=', self.__a, 'b=', self.__b
a1=A(10,20)
a1.myprint()
a1(80)

答案:为了能让对象实例能被直接调用,需要实现call方法

class A(object):
 def __init__(self, a, b):
 self.__a = a
 self.__b = b
 def myprint(self):
 print 'a=', self.__a, 'b=', self.__b
 def __call__(self, num):
 print 'call:', num + self.__a

3.交换两个变量的值

一行代码交换两个变量值

a=8b=9

答案:

(a,b) = (b,a)

人工智能常规面试题

算法工程师面试题

LDA(线性判别分析) 和 PCA 的区别与联系 K-均值算法收敛性的证明如何确定 LDA (隐狄利克雷模型) 中主题的个数随机梯度下降法的一些改进算法 L1正则化产生稀疏性的原因如何对贝叶斯网络进行采样 从方差、偏差角度解释 Boosting 和 BaggingLSTM是如何实现长短期记忆功能的WGAN解决了原始 GAN 中的什么问题

深度学习通用面试题

什么是深度学习?为什么它会如此受欢迎?深度学习与机器学习有什么区别?深度学习的先决条件是什么?选择哪些工具/语言构建深度学习模型?为什么构建深度学习模型需要使用GPU?何时(何处)应用神经网络?是否需要大量数据来训练深度学习模型?一般在哪里找一些基本的深度学习项目用来练习?前馈神经网络和递归神经网络之间有什么区别?什么是优化函数?说出几个常见的优化函数。

机器学习工程师面试题

你会在时间序列数据集上使用什么交叉验证技术?是用k倍或LOOCV?你是怎么理解偏差方差的平衡的?给你一个有1000列和1百万行的训练数据集,这个数据集是基于分类问题的。经理要求你来降低该数据集的维度以减少模型计算时间,但你的机器内存有限。你会怎么做?全球平均温度的上升导致世界各地的海盗数量减少。这是否意味着海盗的数量减少引起气候变化?给你一个数据集,这个数据集有缺失值,且这些缺失值分布在离中值有1个标准偏差的范围内。百分之多少的数据不会受到影响?为什么?你意识到你的模型受到低偏差和高方差问题的困扰。那么,应该使用哪种算法来解决问题呢?为什么?协方差和相关性有什么区别?真阳性率和召回有什么关系?写出方程式。Gradient boosting算法(GBM)和随机森林都是基于树的算法,它们有什么区别?你认为把分类变量当成连续型变量会更得到一个更好的预测模型吗?“买了这个的客户,也买了......”亚马逊的建议是哪种算法的结果?在k-means或kNN,我们是用欧氏距离来计算最近的邻居之间的距离。为什么不用曼哈顿距离?我知道校正R2或者F值是用来评估线性回归模型的。那用什么来评估逻辑回归模型?为什么朴素贝叶斯如此“朴素”?

行业巨头模拟面试

苹果人工智能面试题

有成千上万个用户,每个用户都有 100 个交易,在 10000 个产品和小组中,用户所参与有意义的部分,你是如何处理这一问题的?为了消除欺诈行为,我们对这些数据进行预筛选,如何才能找到一个数据样本,帮助我们判断一个欺诈行为的真实性?给出两个表格,一个表格用来存储用户 ID 以及购买产品 ID(为1个字节),另一个表格则存储标有产品名称的产品 ID。我们尝试寻找被同一用户同时购买的这样一个成对的产品,像葡萄酒和开瓶器,薯片和啤酒。那么,如何去寻找前 100 个同时存在且成对出现的产品?详细描述 L1 正则化和 L2 正则化二者之间的区别,特别是它们本身对模型训练过程的影响有什么不同?假设你有 10 万个存储在不同服务器上的文件,你想对所有的文件进行加工,那么用 Hadoop 如何处理?Python 和 Scala 之间有什么区别?解释一下 LRU Cache 算法。如何设计一个客户——服务器模型,客服端每分钟都可以发送位置数据。如何将数据从一个 Hadoop 聚类传递给另一个 Hadoop 聚类?Java 中的内存有哪些不同的类型?你是如何处理数百个标题中的元数据这一繁琐任务的?在数据流和可访问性方面,如何在隐藏时间帧内进行测量?其中在隐藏时间帧内,核心超负荷将计算机能量重定向到 cellar dome 的过度复杂文件系统的边界结构。你最希望拥有的超能力是什么?如果你有一个时间序列传感器,请预测其下一个读数。使用 SQL 创建 market basket 输出。你有没有过心理物理学实验的经验?(Research Portfolio based question)你在表征方法上的专长是什么?通常使用什么?你是如何在研究中使用它,有没有什么有趣的结果?(Research Portfolio based question)如何进行故障分析?检查一个二叉树是否为左右子树上的镜像。什么是随机森林?为什么朴素贝叶斯效果更好?

Google人工智能面试题

求导1/x。画出log (x+10)曲线。怎样设计一次客户满意度调查?一枚硬币抛10次,得到8正2反。试析抛硬币是否公平?p值是多少?接上题。10枚硬币,每一枚抛10次,结果会如何?为了抛硬币更公平,应该怎么改进?解释一个非正态分布,以及如何应用。为什么要用特征选择?如果两个预测因子高度相关,系数对逻辑回归有怎样的影响?系数的置信区间是多少?K-mean与高斯混合模型:K-means算法和EM算法的差别在哪里?使用高斯混合模型时,怎样判断它适用与否?(正态分布)聚类时标签已知,怎样评估模型的表现?为什么不用逻辑回归,而要用GBM?每年应聘Google的人有多少?你给一个Google APP做了些修改。怎样测试某项指标是否有增长描述数据分析的流程。高斯混合模型 (GMM) 中,推导方程。怎样衡量用户对视频的喜爱程度?模拟一个二元正态分布。求一个分布的方差。怎样建立中位数的Estimator?如果回归模型中的两个系数估计,分别是统计显著的,把两个放在一起测试,会不会同样显著?

最后

加上具体答案篇幅太长了, 我给你们答案链接,私信回复我“面试答案”自取,自动回复7天删除

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【面试案例(75道经典AI面试题)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/2090193.html

标签:面试案例

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0669秒, 内存占用1.93 MB, 访问数据库24次

陕ICP备14005772号-15